Splitting out to separate function files

This commit is contained in:
Noah L. Schrick 2023-04-12 21:30:46 -05:00
parent f755ec2edc
commit c2cd91b766
5 changed files with 174 additions and 150 deletions

View File

@ -5,114 +5,12 @@
# 1. Penalized Regression and Classification
## a. Modified Ridge classification for LASSO penalties
penalized_loss <- function(X, y, beta, lam, alpha=0){
# y needs to be 0/1
# beta: regression coefficients
# lam: penalty, lam=0 un-penalized logistic regression
# alpha = 0 ridge penalty, alpha = 1 lasso penalty
m <- nrow(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
# 1. logistic unpenalized loss
penal.loss <- sum(-yclass*log(yhat) - (1-yclass)*log(1-yhat))/m +
# 2. penalty, lam=0 removes penalty
lam*((1-alpha)*lam*sum(beta*beta)/2 + # ridge
alpha*sum(abs(beta))) # lasso
return(penal.loss)
}
ridge_grad <- function(X, y, beta, lam){
# y needs to be 0/1
# also works for non-penalized logistic regression if lam=0
m <- nrow(X)
p <- ncol(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
grad <- rep(0,p+1)
for (a in seq(1,p+1)){
beta_a <- beta[a] # input beta from previous descent step
Loss.grad <- sum(-yclass*(1-yhat)*Xtilde[,a] +
(1-yclass)*yhat*Xtilde[,a])
grad[a] <- Loss.grad + lam*beta_a
} # end for loop
grad <- grad/m
return(grad)
}
### gradient descent to optimize beta's
ridge_betas <- function(X,y,beta_init=NULL,lam, alpha=0, method="BFGS"){
if (is.null(beta_init)){beta_init <- rep(.1, ncol(X)+1)}
# method: BFGS, CG, Nelder-Mead
no_penalty_cg <- optim(beta_init, # guess
fn=function(beta){penalized_loss(X, y, beta, lam, alpha=0)}, # objective
gr=function(beta){ridge_grad(X, y, beta, lam)}, # gradient
method = method) #, control= list(trace = 2))
return(list(loss=no_penalty_cg$value, betas = no_penalty_cg$par))
}
lasso_betas <- function(X,y){
ridge_betas(X,y,beta_init=NULL,lam=0,alpha=0,method="BFGS")
}
source("Schrick-Noah_Ridge-LASSO-Regression.R")
### Use npdro simulated data to test
if (!require("devtools")) install.packages("devtools")
library(devtools)
install_github("insilico/npdro")
if (!require("npdro")) install.packages("npdro")
library(npdro)
if (!require("dplyr")) install.packages("dplyr")
library(dplyr)
num.samples <- 300
num.variables <- 100
dataset <- npdro::createSimulation2(num.samples=num.samples,
num.variables=num.variables,
pct.imbalance=0.5,
pct.signals=0.2,
main.bias=0.5,
interaction.bias=1,
hi.cor=0.95,
lo.cor=0.2,
mix.type="main-interactionScalefree",
label="class",
sim.type="mixed",
pct.mixed=0.5,
pct.train=0.5,
pct.holdout=0.5,
pct.validation=0,
plot.graph=F,
graph.structure = NULL,
verbose=T)
train <- dataset$train #150x101
test <- dataset$holdout
validation <- dataset$validation
dataset$signal.names
colnames(train)
# separate the class vector from the predictor data matrix
train.X <- train[, -which(colnames(train) == "class")]
train.y <- train[, "class"]
train.y.01 <- as.numeric(train.y)-1
lambda <- 0
unpen_beta <- lasso_betas(train.X, train.y)
for(beta in unpen_beta$betas){
if(abs(beta) <= lambda){
beta <- 0
}
else if (beta > lambda){
beta <- beta-lambda
}
else{
beta <- beta+lambda
}
}
source("Schrick-Noah_Simulated-Data.R")
bundled_data <- create_data()
# bundled_data$train.X = train.X
lasso.df <- data.frame(att=c("intercept", colnames(train.X)),
scores=unpen_beta$betas,
@ -122,53 +20,11 @@ dplyr::slice_max(lasso.df,order_by=abs_scores,n=20)
### Compare with Ridge
### Compare with Random Forest
if (!require("randomForest")) install.packages("randomForest")
library(randomForest)
if (!require("ranger")) install.packages("ranger")
library(ranger)
rf_comp <- function(train){
rf<-randomForest(as.factor(train$class) ~ .,data=train, ntree=5000,
importance=T)
print(rf) # error
detach("package:ranger", unload=TRUE)
rf_imp<-data.frame(rf_score=importance(rf, type=1)) # Cannot do if ranger is loaded
#dplyr::arrange(rf_imp,-MeanDecreaseAccuracy)
print(dplyr::slice_max(rf_imp,order_by=MeanDecreaseAccuracy, n=20))
library(ranger)
rf2<-ranger(as.factor(train$class) ~ ., data=train, num.trees=5000,
importance="permutation")
print(rf2) # error
rf2_imp<-data.frame(rf_score=rf2$variable.importance)
#dplyr::arrange(rf_imp,-MeanDecreaseAccuracy)
print(dplyr::slice_max(rf2_imp,order_by=rf_score, n=20))
#rftest <- predict(rf, newdata=test, type="class")
#confusionMatrix(table(rftest,test$class))
}
source("Schrick-Noah_Random-Forest.R")
rf_comp(train)
### Compare with glmnet
if (!require("glmnet")) install.packages("glmnet")
library(glmnet)
glm_fcn <- function(train.X, train.y, alpha_p){
glmnet.class.model<-cv.glmnet(as.matrix(train.X), train.y, alpha=alpha_p,
family="binomial", type.measure="class")
glmnet.class.model$lambda.1se
glmnet.class.model$lambda.min
plot(glmnet.class.model)
glmnet.class.coeffs<-predict(glmnet.class.model,type="coefficients")
#glmnet.cc.coeffs # maybe 3 is most important, Excess kurtosis
model.class.terms <- colnames(train.X) # glmnet includes an intercept but we are going to ignore
#nonzero.glmnet.qtrait.coeffs <- model.qtrait.terms[glmnet.qtrait.coeffs@i[which(glmnet.qtrait.coeffs@i!=0)]] # skip intercept if there, 0-based counting
glmnet.df <- data.frame(as.matrix(glmnet.class.coeffs))
glmnet.df$abs_scores <- abs(glmnet.df$lambda.1se)
dplyr::slice_max(glmnet.df,order_by=abs_scores,n=21)
}
source("Schrick-Noah_glmnet.R")
#### Alpha = 0
glm_fcn(train.X, train.y, 0)

View File

@ -0,0 +1,25 @@
if (!require("randomForest")) install.packages("randomForest")
library(randomForest)
if (!require("ranger")) install.packages("ranger")
library(ranger)
rf_comp <- function(train){
rf<-randomForest(as.factor(train$class) ~ .,data=train, ntree=5000,
importance=T)
print(rf) # error
detach("package:ranger", unload=TRUE)
rf_imp<-data.frame(rf_score=importance(rf, type=1)) # Cannot do if ranger is loaded
#dplyr::arrange(rf_imp,-MeanDecreaseAccuracy)
print(dplyr::slice_max(rf_imp,order_by=MeanDecreaseAccuracy, n=20))
library(ranger)
rf2<-ranger(as.factor(train$class) ~ ., data=train, num.trees=5000,
importance="permutation")
print(rf2) # error
rf2_imp<-data.frame(rf_score=rf2$variable.importance)
#dplyr::arrange(rf_imp,-MeanDecreaseAccuracy)
print(dplyr::slice_max(rf2_imp,order_by=rf_score, n=20))
#rftest <- predict(rf, newdata=test, type="class")
#confusionMatrix(table(rftest,test$class))
}

View File

@ -0,0 +1,71 @@
penalized_loss <- function(X, y, beta, lam, alpha=0){
# y needs to be 0/1
# beta: regression coefficients
# lam: penalty, lam=0 un-penalized logistic regression
# alpha = 0 ridge penalty, alpha = 1 lasso penalty
m <- nrow(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
# 1. logistic unpenalized loss
penal.loss <- sum(-yclass*log(yhat) - (1-yclass)*log(1-yhat))/m +
# 2. penalty, lam=0 removes penalty
lam*((1-alpha)*lam*sum(beta*beta)/2 + # ridge
alpha*sum(abs(beta))) # lasso
return(penal.loss)
}
ridge_grad <- function(X, y, beta, lam){
# y needs to be 0/1
# also works for non-penalized logistic regression if lam=0
m <- nrow(X)
p <- ncol(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
grad <- rep(0,p+1)
for (a in seq(1,p+1)){
beta_a <- beta[a] # input beta from previous descent step
Loss.grad <- sum(-yclass*(1-yhat)*Xtilde[,a] +
(1-yclass)*yhat*Xtilde[,a])
grad[a] <- Loss.grad + lam*beta_a
} # end for loop
grad <- grad/m
return(grad)
}
### gradient descent to optimize beta's
ridge_betas <- function(X,y,beta_init=NULL,lam, alpha=0, method="BFGS"){
if (is.null(beta_init)){beta_init <- rep(.1, ncol(X)+1)}
# method: BFGS, CG, Nelder-Mead
no_penalty_cg <- optim(beta_init, # guess
fn=function(beta){penalized_loss(X, y, beta, lam, alpha=0)}, # objective
gr=function(beta){ridge_grad(X, y, beta, lam)}, # gradient
method = method) #, control= list(trace = 2))
return(list(loss=no_penalty_cg$value, betas = no_penalty_cg$par))
}
# Regression coeffs for LASSO
lasso_betas <- function(X,y){
ridge_betas(X,y,beta_init=NULL,lam=0,alpha=0,method="BFGS")
}
# Adjust betas
unpen_coeff <- function(X, y, lambda=0){
unpen_beta <- lasso_betas(X, y)
for(beta in unpen_beta$betas){
if(abs(beta) <= lambda){
beta <- 0
}
else if (beta > lambda){
beta <- beta-lambda
}
else{
beta <- beta+lambda
}
}
}

View File

@ -0,0 +1,54 @@
if (!require("devtools")) install.packages("devtools")
library(devtools)
install_github("insilico/npdro")
if (!require("npdro")) install.packages("npdro")
library(npdro)
if (!require("dplyr")) install.packages("dplyr")
library(dplyr)
create_data <- function(num.samples=300, num.variables=100,
pct.imbalance=0.5,pct.signals=0.2,
main.bias=0.5,interaction.bias=1,
hi.cor=0.95,lo.cor=0.2,
mix.type="main-interactionScalefree",
label="class",sim.type="mixed",
pct.mixed=0.5,pct.train=0.5,
pct.holdout=0.5,pct.validation=0,
plot.graph=F,graph.structure = NULL,
verbose=T){
dataset <- npdro::createSimulation2(num.samples=num.samples,
num.variables=num.variables,
pct.imbalance=pct.imbalance,
pct.signals=pct.signals,
main.bias=main.bias,
interaction.bias=interaction.bias,
hi.cor=hi.cor,
lo.cor=lo.cor,
mix.type=mix.type,
label=label,
sim.type=sim.type,
pct.mixed=pct.mixed,
pct.train=pct.train,
pct.holdout=pct.holdout,
pct.validation=pct.validation,
plot.graph=plot.graph,
graph.structure = graph.structure,
verbose=verbose)
train <- dataset$train #150x101
test <- dataset$holdout
validation <- dataset$validation
dataset$signal.names
colnames(train)
# separate the class vector from the predictor data matrix
train.X <- train[, -which(colnames(train) == "class")]
train.y <- train[, "class"]
train.y.01 <- as.numeric(train.y)-1
return(list(train=train, test=test, train.X=train.X, train.y=train.y,
validation=validation, train.y.01=train.y.01))
}

18
Schrick-Noah_glmnet.R Normal file
View File

@ -0,0 +1,18 @@
if (!require("glmnet")) install.packages("glmnet")
library(glmnet)
glm_fcn <- function(train.X, train.y, alpha_p){
glmnet.class.model<-cv.glmnet(as.matrix(train.X), train.y, alpha=alpha_p,
family="binomial", type.measure="class")
glmnet.class.model$lambda.1se
glmnet.class.model$lambda.min
plot(glmnet.class.model)
glmnet.class.coeffs<-predict(glmnet.class.model,type="coefficients")
#glmnet.cc.coeffs # maybe 3 is most important, Excess kurtosis
model.class.terms <- colnames(train.X) # glmnet includes an intercept but we are going to ignore
#nonzero.glmnet.qtrait.coeffs <- model.qtrait.terms[glmnet.qtrait.coeffs@i[which(glmnet.qtrait.coeffs@i!=0)]] # skip intercept if there, 0-based counting
glmnet.df <- data.frame(as.matrix(glmnet.class.coeffs))
glmnet.df$abs_scores <- abs(glmnet.df$lambda.1se)
dplyr::slice_max(glmnet.df,order_by=abs_scores,n=21)
}