CS-7863-Sci-Stat-Proj-6/Schrick-Noah_Ridge-LASSO-Regression.R

71 lines
2.3 KiB
R

penalized_loss <- function(X, y, beta, lam, alpha=0){
# y needs to be 0/1
# beta: regression coefficients
# lam: penalty, lam=0 un-penalized logistic regression
# alpha = 0 ridge penalty, alpha = 1 lasso penalty
m <- nrow(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
# 1. logistic unpenalized loss
penal.loss <- sum(-yclass*log(yhat) - (1-yclass)*log(1-yhat))/m +
# 2. penalty, lam=0 removes penalty
lam*((1-alpha)*lam*sum(beta*beta)/2 + # ridge
alpha*sum(abs(beta))) # lasso
return(penal.loss)
}
ridge_grad <- function(X, y, beta, lam){
# y needs to be 0/1
# also works for non-penalized logistic regression if lam=0
m <- nrow(X)
p <- ncol(X)
Xtilde <- as.matrix(cbind(intercept=rep(1,m), X))
cnames <- colnames(Xtilde)
z <- Xtilde %*% beta # column vector
yhat <- 1/(1+exp(-z))
yclass <- as.numeric(y)
grad <- rep(0,p+1)
for (a in seq(1,p+1)){
beta_a <- beta[a] # input beta from previous descent step
Loss.grad <- sum(-yclass*(1-yhat)*Xtilde[,a] +
(1-yclass)*yhat*Xtilde[,a])
grad[a] <- Loss.grad + lam*beta_a
} # end for loop
grad <- grad/m
return(grad)
}
### gradient descent to optimize beta's
ridge_betas <- function(X,y,beta_init=NULL,lam, alpha=0, method="BFGS"){
if (is.null(beta_init)){beta_init <- rep(.1, ncol(X)+1)}
# method: BFGS, CG, Nelder-Mead
no_penalty_cg <- optim(beta_init, # guess
fn=function(beta){penalized_loss(X, y, beta, lam, alpha=0)}, # objective
gr=function(beta){ridge_grad(X, y, beta, lam)}, # gradient
method = method) #, control= list(trace = 2))
return(list(loss=no_penalty_cg$value, betas = no_penalty_cg$par))
}
# Regression coeffs for LASSO
lasso_betas <- function(X,y){
ridge_betas(X,y,beta_init=NULL,lam=0,alpha=0,method="BFGS")
}
# Adjust betas
unpen_coeff <- function(X, y, lambda=0){
unpen_beta <- lasso_betas(X, y)
for(beta in unpen_beta$betas){
if(abs(beta) <= lambda){
beta <- 0
}
else if (beta > lambda){
beta <- beta-lambda
}
else{
beta <- beta+lambda
}
}
}