adding lambda2 term for lasso loop

This commit is contained in:
Noah L. Schrick 2023-04-13 02:06:47 -05:00
parent 2e81ded14f
commit 2b7a52da12
3 changed files with 17 additions and 19 deletions

View File

@ -100,7 +100,9 @@ run_comparison <- function(bundled_data){
run_comparison(bundled_data) run_comparison(bundled_data)
## b. Repeat comparison using a graph with clusters ## b. Repeat comparison using a graph with clusters
source("Schrick-Noah_graphs.R") source("Schrick-Noah_graphs.R")
bundled_graph_data <- sim_graph_data() bundled_graph <- sim_graph_data()
bundled_graph_data <- bundled_graph$bundled_graph_data
g1 <- bundled_graph$g1
run_comparison(bundled_graph_data) run_comparison(bundled_graph_data)
@ -125,25 +127,15 @@ plot.igraph(knn.graph.g,layout=layout_with_fr(knn.graph.g),
main="Manhattan, knn-graph from simulated data main="Manhattan, knn-graph from simulated data
with erdos-renyi graph structure") with erdos-renyi graph structure")
### Bundled Data is_isomorphic_to(g1, knn.graph.g)
npdr.nbpairs.idx <- npdro::nearestNeighbors(t(bundled_data$train.X), plot(g1)
# transpose does dist between predictors
# without transpose does dist between samples clusters <- cluster_louvain(knn.graph.g)
#nbd.method="multisurf", k=0, plot(knn.graph.g, mark.groups=clusters)
nbd.method = "relieff",
nbd.metric="manhattan",
k=my.k)
knn.graph <- graph_from_edgelist(as.matrix(npdr.nbpairs.idx),
directed=F)
knn.graph <- simplify(knn.graph)
### Plot network
plot.igraph(knn.graph,layout=layout_with_fr(knn.graph),
vertex.color="red",
vertex.size=3,vertex.label=NA,
main="Manhattan, knn-graph from simulated data")
## d. Add Laplace graph penalty ## d. Add Laplace graph penalty
Lhat <- laplacian_matrix(g1, normalized = TRUE)
### Find resulting beta coeffs ### Find resulting beta coeffs

View File

@ -1,3 +1,6 @@
if (!require("numbers")) install.packages("numbers")
library(numbers)
penalized_loss <- function(X, y, beta, lam, alpha=0){ penalized_loss <- function(X, y, beta, lam, alpha=0){
# y needs to be 0/1 # y needs to be 0/1
# beta: regression coefficients # beta: regression coefficients
@ -55,7 +58,7 @@ lasso_betas <- function(X,y,beta_init=NULL){
} }
# Adjust betas # Adjust betas
lasso_coeff <- function(X, y, lambda=0, tol=1e-8){ lasso_coeff <- function(X, y, lambda=0.03125, tol=1e-2){
unpen_beta <- lasso_betas(X, y, beta_init=numeric(101)) unpen_beta <- lasso_betas(X, y, beta_init=numeric(101))
old_loss <- unpen_beta$loss old_loss <- unpen_beta$loss
lasso_converged <- FALSE lasso_converged <- FALSE
@ -79,6 +82,9 @@ lasso_coeff <- function(X, y, lambda=0, tol=1e-8){
} }
unpen_beta <- lasso_betas(X,y,beta_init=beta_LS$par) unpen_beta <- lasso_betas(X,y,beta_init=beta_LS$par)
lasso_converged <- abs(unpen_beta$loss - old_loss) < tol lasso_converged <- abs(unpen_beta$loss - old_loss) < tol
if(mod(loop_count, 25) == 0){
cat("Loop:", loop_count, "Convergence:", abs(unpen_beta$loss - old_loss),"\n")
}
old_loss <- unpen_beta$loss old_loss <- unpen_beta$loss
loop_count <- loop_count + 1 loop_count <- loop_count + 1
} }

View File

@ -39,5 +39,5 @@ sim_graph_data <- function(){
### Dataset with g1 ### Dataset with g1
bundled_graph_data <- create_data(graph.structure=g1) bundled_graph_data <- create_data(graph.structure=g1)
return(bundled_graph_data) return(list(bundled_graph_data=bundled_graph_data,g1=g1))
} }