CS-7863-Sci-Stat-Proj-6/Schrick-Noah_Homework-6.R

183 lines
6.6 KiB
R

# Homework 6 for the University of Tulsa's CS-7863 Sci-Stat Course
# Penalized Machine Learning
# Professor: Dr. McKinney, Spring 2023
# Noah L. Schrick - 1492657
if (!require("data.table")) install.packages("data.table")
library(data.table)
# 1. Penalized Regression and Classification
## a. Modified Ridge classification for LASSO penalties
source("Schrick-Noah_Ridge-LASSO-Regression.R")
### Use npdro simulated data to test
source("Schrick-Noah_Simulated-Data.R")
bundled_data <- create_data()
run_comparison <- function(bundled_data){
### LASSO
unpen_beta <- lasso_coeff(bundled_data$train.X, bundled_data$train.y)
lasso.df <- data.frame(att=c("intercept", colnames(bundled_data$train.X)),
scores=unpen_beta$betas,
abs_scores=abs(unpen_beta$betas))
lasso.res <- dplyr::slice_max(lasso.df,order_by=abs_scores,n=20)
lasso.table <- as.data.table(lasso.res)
### Compare with Ridge
#### Find lambda
tune_results <- tune_ridge(bundled_data$train.X, bundled_data$train.y,
num_folds=10, 2^seq(-5,5,1), verbose=F)
plot(log(tune_results$cv.table$hyp), tune_results$cv.table$means, type="l",
xlab="lambda", ylab="CV Mean Loss")
abline(v=tune_results$lam.min)
tune_results$lam.min
#### Use lam.min for Ridge Regression
ridge_result <- ridge_betas(bundled_data$train.X, bundled_data$train.y,
beta_init = NULL, lam=tune_results$lam.min, method="BFGS")
ridge.df <- data.frame(att=c("intercept", colnames(bundled_data$train.X)),
scores=ridge_result$betas,
abs_scores=abs(ridge_result$betas))
ridge.res <- dplyr::slice_max(ridge.df,order_by=abs_scores,n=20)
ridge.table <- as.data.table(ridge.res)
### Compare with Random Forest
source("Schrick-Noah_Random-Forest.R")
rf_result <- rf_comp(bundled_data$train)
rf.df <- data.frame(att=c(colnames(bundled_data$train.X)),
scores=rf_result$rf2_imp$rf_score)
rf_res <- dplyr::slice_max(rf.df,order_by=scores, n=20)
rf.table <- as.data.table(rf_res)
### Compare with glmnet
source("Schrick-Noah_glmnet.R")
#### Alpha = 0
glm.res.0 <- glm_fcn(bundled_data$train.X, bundled_data$train.y, 0)
glm.df.0 <- data.frame(att=c("intercept", colnames(bundled_data$train.X)),
scores=glm.res.0$lambda.1se,
abs_scores=glm.res.0$abs_scores)
glm.df.0.res <- dplyr::slice_max(glm.df.0,order_by=abs_scores,n=20)
glm.0.table <- as.data.table(glm.df.0.res)
#### Alpha = 1
glm.res.1 <- glm_fcn(bundled_data$train.X, bundled_data$train.y, 1) # alpha=1
glm.df.1 <- data.frame(att=c("intercept", colnames(bundled_data$train.X)),
scores=glm.res.1$lambda.1se,
abs_scores=glm.res.1$abs_scores)
glm.df.1.res <- dplyr::slice_max(glm.df.1,order_by=abs_scores,n=20)
glm.1.table <- as.data.table(glm.df.1.res)
### Plot
#### Convert names to indices
lasso.df$att <- match(lasso.df$att,colnames(bundled_data$train))
ridge.df$att <- match(ridge.df$att,colnames(bundled_data$train))
rf.df$att <- match(rf.df$att,colnames(bundled_data$train))
glm.df.0$att <- match(glm.df.0$att,colnames(bundled_data$train))
glm.df.1$att <- match(glm.df.1$att,colnames(bundled_data$train))
#### Scale
lasso.df$abs_scores <- scale(lasso.df$abs_scores)
ridge.df$abs_scores <- scale(ridge.df$abs_scores)
rf.df$scores <- scale(rf.df$scores)
glm.df.0$abs_scores <- scale(glm.df.0$abs_scores)
glm.df.1$abs_scores <- scale(glm.df.1$abs_scores)
plot(x=lasso.df$att, y=lasso.df$abs_scores, type="l", xlab="Vars",
ylab="Coefficients (Abs Scores)", xaxt="n", col="blue", ylim=c(-1,3),
main="Scaled scores for simulated data feature selection")
axis(1, at=1:101, labels=colnames(bundled_data$train), cex.axis=0.5)
lines(x=ridge.df$att, y=ridge.df$abs_scores, col="red")
lines(x=rf.df$att, y=rf.df$scores, col="green")
lines(x=glm.df.0$att, y=glm.df.0$abs_scores, col="bisque4")
lines(x=glm.df.1$att, y=glm.df.1$abs_scores, col="purple")
legend(x="topleft",
legend=c("LASSO", "Ridge", "Random Forest","glmnet (alpha=0)", "glmnet (alpha=1)"),
lty=c(1,1,1,1,1),
col=c("blue", "red", "green", "bisque4", "purple"),
cex=1)
}
run_comparison(bundled_data)
## b. Repeat comparison using a graph with clusters
source("Schrick-Noah_graphs.R")
bundled_graph <- sim_graph_data()
bundled_graph_data <- bundled_graph$bundled_graph_data
g1 <- bundled_graph$g1
run_comparison(bundled_graph_data)
## c. Use npdro and igraph to create knn
### Bundled Graph Data
my.k <- 3 # larger k, fewer clusters
npdr.nbpairs.idx.g <- npdro::nearestNeighbors(t(bundled_graph_data$train.X),
# transpose does dist between predictors
# without transpose does dist between samples
#nbd.method="multisurf", k=0,
nbd.method = "relieff",
nbd.metric="manhattan",
k=my.k)
knn.graph.g <- graph_from_edgelist(as.matrix(npdr.nbpairs.idx.g),
directed=F)
knn.graph.g <- simplify(knn.graph.g)
### Plot network
plot.igraph(knn.graph.g,layout=layout_with_fr(knn.graph.g),
vertex.color="red",
vertex.size=3,vertex.label=NA,
main="Manhattan, knn-graph from simulated data
with erdos-renyi graph structure")
is_isomorphic_to(g1, knn.graph.g)
plot(g1)
clusters <- cluster_louvain(knn.graph.g)
plot(knn.graph.g, mark.groups=clusters)
## d. Add Laplace graph penalty
Lhat <- laplacian_matrix(g1, normalized = TRUE)
### Find resulting beta coeffs
### Optimize or choose value for lambda2
### Compare to a) and b)
# 2. Gradient Descent
## Write fn with learning param
grad.rosen <- function(xvec, a=2, b=100){
x <- xvec[1];
y <- xvec[2];
f.x <- -2*(a-x) - 4*b*x*(y-x^2)
f.y <- 2*b*(y-x^2)
return( c(f.x, f.y))
}
a = 2
b=100
alpha = .0001 # learning rate
p = c(0,0) # start for momentum
xy = c(-1.8, 3.0) # guess for solution
# gradient descent
epochs = 1000000
for (epoch in 1:epochs){
p = -grad.rosen(xy,a,b);
xy = xy + alpha*p;
}
print(xy) # Should be: ~(2,4)
# Using optim:
f.rosen <- function(xvec, a=2, b=100){
#a <- 2; b <- 1000;
x <- xvec[1];
y <- xvec[2];
return ( (a-x)^2 + b*(y-x^2)^2)
}
sol.BFGS <- optim(par=c(-1.8,3.0), fn=function(x){f.rosen(x,a=2,b=100)},
gr=function(x){grad.rosen(x,a=2,b=100)}, method="BFGS")
sol.BFGS$par