Initial subgraphing work
This commit is contained in:
parent
9c2f92b91c
commit
a4354f5ba0
Binary file not shown.
@ -1,7 +1,7 @@
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
|
||||
weighted <- 'False'
|
||||
weighted <- 'True'
|
||||
#conda_install(envname = "r-reticulate", packages="networkx")
|
||||
#conda_install(envname = "r-reticulate", packages="matplotlib")
|
||||
#conda_install(envname = "r-reticulate", packages="pydot")
|
||||
|
||||
@ -36,6 +36,7 @@ def prep_seirds(weighted):
|
||||
|
||||
ep_tmp = 0 # counter for epsilon
|
||||
inf_ct = 0 # infection rate counter
|
||||
recov_ct = 0 # recov rate counter
|
||||
|
||||
for node in A:
|
||||
color = A.get_node(node).attr.to_dict()['fillcolor']
|
||||
@ -50,16 +51,18 @@ def prep_seirds(weighted):
|
||||
in_edges = list(G.in_edges(node))
|
||||
out_edges = list(G.out_edges(node))
|
||||
|
||||
|
||||
tmp_S = 1
|
||||
tmp_recov = 0
|
||||
tmp_inf = 0
|
||||
for source in in_edges:
|
||||
tmp_S = 1
|
||||
# If previous node was infected, then we are recovered
|
||||
if (color_d[source[0]] == 'red'):
|
||||
R = R + 1
|
||||
tmp_S = 0
|
||||
break # No need to check the other nodes
|
||||
if(weighted == 'False' or not in_edges):
|
||||
tmp_recov = 1
|
||||
else:
|
||||
recov_ct = recov_ct + 1/len(in_edges) # trivial weighting
|
||||
recov_ct = recov_ct + tmp_recov
|
||||
for source in out_edges:
|
||||
if (color_d[source[0]] == 'red'):
|
||||
if(weighted == 'False' or not out_edges):
|
||||
@ -68,26 +71,30 @@ def prep_seirds(weighted):
|
||||
inf_ct = inf_ct + 1/len(out_edges) # trivial weighting
|
||||
inf_ct = inf_ct + tmp_inf
|
||||
S = S + tmp_S
|
||||
#G[source[0]][node]['weight'] = 3
|
||||
elif color == 'yellow':
|
||||
color_map.append(color)
|
||||
color_d[node] = color
|
||||
in_edges = list(G.in_edges(node))
|
||||
|
||||
tmp_E = 1
|
||||
tmp_R = 0
|
||||
tmp_inf = 0
|
||||
tmp_recov = 0
|
||||
for source in in_edges:
|
||||
# If previous node was infected, then we are recovered
|
||||
if (color_d[source[0]] == 'red'):
|
||||
tmp_R = 1
|
||||
tmp_E = 0
|
||||
if(weighted == 'False' or not in_edges):
|
||||
tmp_recov = 1
|
||||
else:
|
||||
recov_ct = recov_ct + 1/len(in_edges) # trivial weighting
|
||||
if (color_d[source[0]] == '' or color_d[source[0]] == 'white'):
|
||||
if(weighted == 'False' or not in_edges):
|
||||
tmp_inf = 1 # add 1 for the inf counter
|
||||
else:
|
||||
inf_ct = inf_ct + 1/len(in_edges) # trivial weighting
|
||||
E = E + tmp_E
|
||||
R = R + tmp_R
|
||||
recov_ct = recov_ct + tmp_recov
|
||||
inf_ct = inf_ct + tmp_inf
|
||||
else:
|
||||
color_map.append(color)
|
||||
@ -116,7 +123,8 @@ def prep_seirds(weighted):
|
||||
# Params
|
||||
beta = (inf_ct)/len(A) # rate of infec
|
||||
delta = 1 # incubation period
|
||||
gamma_r = R/len(A) # recov rate
|
||||
#gamma_r = R/len(A) # recov rate
|
||||
gamma_r = recov_ct/len(A)
|
||||
gamma_d = D/len(A) # death rate
|
||||
mu = D/(I_R+I_D) # fatality ratio
|
||||
epsilon = ep_tmp/len(A) # infected import rate
|
||||
|
||||
28
Analysis/segment_network.py
Normal file
28
Analysis/segment_network.py
Normal file
@ -0,0 +1,28 @@
|
||||
#!/usr/bin/python3
|
||||
|
||||
import networkx as nx
|
||||
import matplotlib.pyplot as plt
|
||||
from collections import OrderedDict
|
||||
from operator import getitem
|
||||
import itertools, os, sys
|
||||
|
||||
A = nx.drawing.nx_agraph.to_agraph(nx.drawing.nx_pydot.read_dot("./1_mo_color_DOTFILE.dot"))
|
||||
A.layout('dot')
|
||||
#A.draw('tree.png')
|
||||
A.remove_node('\\n') # Remove "newline" node from newline end of dot file
|
||||
G=nx.DiGraph(A)
|
||||
|
||||
print(A.get_edge_data(0, 1))
|
||||
|
||||
subgraph = []
|
||||
to_explore = []
|
||||
to_explore.append('0')
|
||||
|
||||
for node in to_explore:
|
||||
for edge in list(G.out_edges(node)):
|
||||
print(edge)
|
||||
print()
|
||||
|
||||
for u, v, d in G.edges(data=True):
|
||||
print(u, v, d['label'])
|
||||
#for node in A:
|
||||
Loading…
x
Reference in New Issue
Block a user