2023-05-02 00:04:52 -05:00

155 lines
4.9 KiB
Python

#!/usr/bin/python3
import networkx as nx
import matplotlib.pyplot as plt
from collections import OrderedDict
from operator import getitem
import itertools, os, sys
# Change dir to location of this python file
print(os.getcwd())
#os.chdir(os.path.dirname(sys.argv[0]))
#print(os.getcwd())
def prep_seirds(weighted):
print("Prepping the SEIRDS model, using trivial weighting=", weighted)
# AGraph preserves attributes, networkx Graph does not.
# Many of the desired functions are in networkx.
# So import AGraph to keep attributes, then convert to Networkx.
A = nx.drawing.nx_agraph.to_agraph(nx.drawing.nx_pydot.read_dot("./1_mo_color_DOTFILE.dot"))
A.layout('dot')
#A.draw('tree.png')
A.remove_node('\\n') # Remove "newline" node from newline end of dot file
G=nx.DiGraph(A)
color_map = []
color_d = {}
node_pos = {} # used for drawing/graphing
# Compartments
S = 0
I_R = 0
I_D = 0
E = 0
R = 0
D = 0
ep_tmp = 0 # counter for epsilon
inf_ct = 0 # infection rate counter
recov_ct = 0 # recov rate counter
for node in A:
color = A.get_node(node).attr.to_dict()['fillcolor']
str_pos = A.get_node(node).attr.to_dict()['pos']
coords = str_pos.split(',')
x = coords[0] # layout for draw function
y = coords[1]
node_pos[node] = float(x), float(y)
if color is None or color == '':
color_map.append("white")
color_d[node] = color
in_edges = list(G.in_edges(node))
out_edges = list(G.out_edges(node))
tmp_S = 1
tmp_recov = 0
tmp_inf = 0
for source in in_edges:
tmp_S = 1
# If previous node was infected, then we are recovered
if (color_d[source[0]] == 'red'):
if(weighted == 'False' or not in_edges):
tmp_recov = 1
else:
recov_ct = recov_ct + 1/len(in_edges) # trivial weighting
recov_ct = recov_ct + tmp_recov
for source in out_edges:
if (color_d[source[0]] == 'red'):
if(weighted == 'False' or not out_edges):
tmp_inf = 1
else:
inf_ct = inf_ct + 1/len(out_edges) # trivial weighting
inf_ct = inf_ct + tmp_inf
S = S + tmp_S
elif color == 'yellow':
color_map.append(color)
color_d[node] = color
in_edges = list(G.in_edges(node))
tmp_E = 1
tmp_R = 0
tmp_inf = 0
tmp_recov = 0
for source in in_edges:
# If previous node was infected, then we are recovered
if (color_d[source[0]] == 'red'):
tmp_E = 0
if(weighted == 'False' or not in_edges):
tmp_recov = 1
else:
recov_ct = recov_ct + 1/len(in_edges) # trivial weighting
if (color_d[source[0]] == '' or color_d[source[0]] == 'white'):
if(weighted == 'False' or not in_edges):
tmp_inf = 1 # add 1 for the inf counter
else:
inf_ct = inf_ct + 1/len(in_edges) # trivial weighting
E = E + tmp_E
recov_ct = recov_ct + tmp_recov
inf_ct = inf_ct + tmp_inf
else:
color_map.append(color)
color_d[node] = color
# Check if node dies
out_edges = list(G.out_edges(node))
if not out_edges:
D = D + 1
I_D = I_D + 1
else:
I_R = I_R + 1
# Check if imported
in_edges = list(G.in_edges(node))
if not in_edges:
ep_tmp = ep_tmp + 1
else:
tmp_inf = 0
for source in in_edges:
if (color_d[source[0]] == '' or color_d[source[0]] == 'white'):
if(weighted == 'False' or not in_edges):
tmp_inf = 1
else:
inf_ct = inf_ct + 1/len(in_edges) # trivial weightin
inf_ct = inf_ct + tmp_inf
# Params
beta = (inf_ct)/len(A) # rate of infec
delta = 1 # incubation period
#gamma_r = R/len(A) # recov rate
gamma_r = recov_ct/len(A)
gamma_d = D/len(A) # death rate
mu = D/(I_R+I_D) # fatality ratio
epsilon = ep_tmp/len(A) # infected import rate
omega = 1 # waning immunity rate
print("Model Compartments:")
print("S:", str(S))
print("E:", str(E))
print("I_R:", str(I_R))
print("I_D:", str(I_D))
print("R:", str(R))
print("D:", str(D))
print("\n")
print("Model Parameters:")
print("infect counter:", str(inf_ct))
print("beta:", str(beta))
print("delta:", str(delta))
print("gamma_r:", str(gamma_r))
print("gamma_d:", str(gamma_d))
print("mu:", str(mu))
print("epsilon:", str(epsilon))
print("omega:", str(omega))
return (S, E, I_R+I_D, R, D, beta, delta, gamma_r, gamma_d, mu, epsilon, omega)