Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA). Generating Report
This commit is contained in:
parent
9fca71f2a8
commit
ee1b2d5669
512
.Rhistory
Normal file
512
.Rhistory
Normal file
@ -0,0 +1,512 @@
|
||||
alpha.LM
|
||||
alpha.ML
|
||||
degree(g)
|
||||
sort(degree(g))
|
||||
sort(degree(g),decreasing=FALSE)
|
||||
sort(degree(g),decreasing=F)
|
||||
sort(degree(g),decreasing=false)
|
||||
sort(degree(g), decreasing = TRUE)
|
||||
head(sort(degree(g), decreasing = TRUE))
|
||||
stddev(degree(g))
|
||||
sd(degree(g))
|
||||
tail(sort(degree(g), decreasing = TRUE))
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
BiocManager::install()
|
||||
simDats <- createSimulation2(data.type = "discrete", avg.maf = 0.2, sim.type = "mainEffect",
|
||||
pct.train = 0.5, pct.holdout = 0.5, pct.validation = 0,
|
||||
main.bias = 0.4, pct.signals = 0.2)
|
||||
# npdro::createSimulation2() example for gwas simulation
|
||||
library(npdro)
|
||||
# npdro::createSimulation2() example for gwas simulation
|
||||
if (!require("npdro")) install.packages("npdro")
|
||||
library(npdro)
|
||||
# npdro::createSimulation2() example for gwas simulation
|
||||
install_github("insilico/npdro")
|
||||
# npdro::createSimulation2() example for gwas simulation
|
||||
if (!require("devtools")) install.packages("devtools")
|
||||
library(devtools)
|
||||
install_github("insilico/npdro")
|
||||
# npdro::createSimulation2() example for gwas simulation
|
||||
if (!require("devtools")) install.packages("devtools")
|
||||
#### Part A: Haemodynamic response functions (HRF) and block design
|
||||
## Plot Basic HRF from 0-20s
|
||||
hq <- function(t,q=4){
|
||||
# q=4 or 5, where 5 has more of a delay
|
||||
return (t^q * exp(-t)/(q^q * exp(-q)))
|
||||
}
|
||||
# use seq to create vector time and use hq to create hrf vectors
|
||||
time <- seq(1,20)
|
||||
time
|
||||
# use seq to create vector time and use hq to create hrf vectors
|
||||
time <- seq(0,20)
|
||||
hq
|
||||
# use seq to create vector time and use hq to create hrf vectors
|
||||
time <- seq(0,20)
|
||||
hrf1 <- hq(time)
|
||||
hrf2 <- hq(time, 5)
|
||||
# plot
|
||||
plot(time,hrf1,type="l")
|
||||
lines(time,hrf2,col="red")
|
||||
## Deconvolve with task onset times
|
||||
# grabbed from afni c code
|
||||
# basis_block_hrf4 from 3dDeconvolve.c
|
||||
HRF <- function(t, d){
|
||||
if (t<0){
|
||||
y=0.0
|
||||
}else{
|
||||
y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4))
|
||||
}
|
||||
return(y)
|
||||
}
|
||||
t=seq(0,360,len=360)
|
||||
onsets=c(14,174,254)
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
plot(blocks.model, type="l")
|
||||
lines(time,hrf1,col="red")
|
||||
pwd
|
||||
ls
|
||||
voxel_time <- scan("059_069_025.1D", character(), quote = "\n")
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
voxel_time <- scan("059_069_025.1D", character(), quote = "\n")
|
||||
voxel_time
|
||||
plot(blocks.model, type="l")
|
||||
lines(voxel_time,hrf1,col="red")
|
||||
voxel_time <- scan("059_069_025.1D", character(), quote = "\n")
|
||||
t=seq(0,max(voxel_time))
|
||||
blocks.model = double()
|
||||
for (curr_t in voxel_time){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in voxel_time){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
voxel_time
|
||||
onsets
|
||||
class(onsets)
|
||||
class(voxel_time)
|
||||
voxel_time <- as.numeric(scan("059_069_025.1D", character(), quote = "\n"))
|
||||
t=seq(0,max(voxel_time))
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in voxel_time){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
## Plot voxel time series data and the block design curve
|
||||
voxel.data <- read.delim("059_069_025.1D")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# normalize the height of the blocks model
|
||||
blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model)
|
||||
lines(blocks.normal,type="l",col="red")
|
||||
# regression
|
||||
length(blocks.normal) # too long
|
||||
dim(voxel.data)[1]
|
||||
# grab elements from blocks.normal to make a vector same as data
|
||||
blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])]
|
||||
length(blocks.norm.subset)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# normalize the height of the blocks model
|
||||
blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model)
|
||||
lines(blocks.normal,type="l",col="red")
|
||||
# regression
|
||||
length(blocks.normal) # too long
|
||||
dim(voxel.data)[1]
|
||||
# grab elements from blocks.normal to make a vector same as data
|
||||
blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])]
|
||||
length(blocks.norm.subset)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
# use lm to create voxel.fit <- lm...
|
||||
voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
# use abline(voxel.fit) to overlay a line with fit coefficients
|
||||
abline(voxel.fit)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
length(blocks.norm.subset)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
length(voxel.data.vec)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
blocks.norm.subset
|
||||
voxel.data.vec
|
||||
voxel.fit <- lm(blocks.norm.subet ~ voxel.data.vec)
|
||||
voxel.fit <- lm(blocks.norm.subset ~ voxel.data.vec)
|
||||
# use abline(voxel.fit) to overlay a line with fit coefficients
|
||||
abline(voxel.fit)
|
||||
## Plot voxel time series data and the block design curve
|
||||
voxel.data <- read.delim("059_069_025.1D")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# use lm to create voxel.fit <- lm...
|
||||
voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
# use abline(voxel.fit) to overlay a line with fit coefficients
|
||||
abline(voxel.fit)
|
||||
voxel.fitr
|
||||
voxel.fit
|
||||
voxel.data
|
||||
blocks.normal
|
||||
blocks.model
|
||||
max(blocks.model)
|
||||
t=seq(0,360,len=360)
|
||||
onsets=c(14,174,254)
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
## Plot voxel time series data and the block design curve
|
||||
voxel.data <- read.delim("059_069_025.1D")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# normalize the height of the blocks model
|
||||
blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model)
|
||||
lines(blocks.normal,type="l",col="red")
|
||||
# regression
|
||||
length(blocks.normal) # too long
|
||||
# Lab 11 for the University of Tulsa's CS-6643 Bioinformatics Course
|
||||
# Introduction to fMRI Analysis and ICA
|
||||
# Professor: Dr. McKinney, Fall 2022
|
||||
# Noah L. Schrick - 1492657
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
#### Part A: Haemodynamic response functions (HRF) and block design
|
||||
## Plot Basic HRF from 0-20s
|
||||
hq <- function(t,q=4){
|
||||
# q=4 or 5, where 5 has more of a delay
|
||||
return (t^q * exp(-t)/(q^q * exp(-q)))
|
||||
}
|
||||
# use seq to create vector time and use hq to create hrf vectors
|
||||
time <- seq(0,20)
|
||||
hrf1 <- hq(time)
|
||||
hrf2 <- hq(time, 5)
|
||||
# plot
|
||||
plot(time,hrf1,type="l")
|
||||
lines(time,hrf2,col="red")
|
||||
## Deconvolve with task onset times
|
||||
# grabbed from afni c code
|
||||
# basis_block_hrf4 from 3dDeconvolve.c
|
||||
HRF <- function(t, d){
|
||||
if (t<0){
|
||||
y=0.0
|
||||
}else{
|
||||
y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4))
|
||||
}
|
||||
return(y)
|
||||
}
|
||||
t=seq(0,360,len=360)
|
||||
onsets=c(14,174,254)
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
## Plot voxel time series data and the block design curve
|
||||
voxel.data <- read.delim("059_069_025.1D")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# normalize the height of the blocks model
|
||||
blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model)
|
||||
lines(blocks.normal,type="l",col="red")
|
||||
# regression
|
||||
length(blocks.normal) # too long
|
||||
dim(voxel.data)[1]
|
||||
# grab elements from blocks.normal to make a vector same as data
|
||||
blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])]
|
||||
length(blocks.norm.subset)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
# use lm to create voxel.fit <- lm...
|
||||
voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
# use abline(voxel.fit) to overlay a line with fit coefficients
|
||||
abline(voxel.fit)
|
||||
# Lab 11 for the University of Tulsa's CS-6643 Bioinformatics Course
|
||||
# Introduction to fMRI Analysis and ICA
|
||||
# Professor: Dr. McKinney, Fall 2022
|
||||
# Noah L. Schrick - 1492657
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
#### Part A: Haemodynamic response functions (HRF) and block design
|
||||
## Plot Basic HRF from 0-20s
|
||||
hq <- function(t,q=4){
|
||||
# q=4 or 5, where 5 has more of a delay
|
||||
return (t^q * exp(-t)/(q^q * exp(-q)))
|
||||
}
|
||||
# use seq to create vector time and use hq to create hrf vectors
|
||||
time <- seq(0,20)
|
||||
hrf1 <- hq(time)
|
||||
hrf2 <- hq(time, 5)
|
||||
# plot
|
||||
plot(time,hrf1,type="l")
|
||||
lines(time,hrf2,col="red")
|
||||
## Deconvolve with task onset times
|
||||
# grabbed from afni c code
|
||||
# basis_block_hrf4 from 3dDeconvolve.c
|
||||
HRF <- function(t, d){
|
||||
if (t<0){
|
||||
y=0.0
|
||||
}else{
|
||||
y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4))
|
||||
}
|
||||
return(y)
|
||||
}
|
||||
t=seq(0,360,len=360)
|
||||
onsets=c(14,174,254)
|
||||
blocks.model = double()
|
||||
for (curr_t in t){
|
||||
summed_hrf=0.0
|
||||
for (start in onsets){
|
||||
summed_hrf=summed_hrf+HRF(curr_t-start,20)
|
||||
}
|
||||
blocks.model = c(blocks.model,summed_hrf)
|
||||
}
|
||||
plot(blocks.model,type="l")
|
||||
## Plot voxel time series data and the block design curve
|
||||
voxel.data <- read.delim("059_069_025.1D")
|
||||
plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data),
|
||||
type="l", xlab="time",ylab="intensity")
|
||||
# normalize the height of the blocks model
|
||||
blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model)
|
||||
lines(blocks.normal,type="l",col="red")
|
||||
# regression
|
||||
length(blocks.normal) # too long
|
||||
dim(voxel.data)[1]
|
||||
# grab elements from blocks.normal to make a vector same as data
|
||||
blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])]
|
||||
length(blocks.norm.subset)
|
||||
voxel.data.vec <- matrix(unlist(voxel.data),ncol=1)
|
||||
# use lm to create voxel.fit <- lm...
|
||||
voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset)
|
||||
plot(blocks.norm.subset,voxel.data.vec,
|
||||
xlab="block model",ylab="voxel data",main="regression fit")
|
||||
# use abline(voxel.fit) to overlay a line with fit coefficients
|
||||
abline(voxel.fit)
|
||||
blocks.model
|
||||
count(blocks.model > 1)
|
||||
which(blocks.model > 1)
|
||||
sum(blocks.model < 1)
|
||||
length(blocks.model)
|
||||
100* sum(blocks.model < 1)/length(blocks.model)
|
||||
#### Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA).
|
||||
## example: multi-dimensional array
|
||||
# 2 3x4 matrices
|
||||
multArray <- array(1:24,dim=c(3,4,2))
|
||||
dim(multArray)
|
||||
multArray[,,1] # matrix 1
|
||||
multArray[,,2] # matrix 2
|
||||
image(multArray[,,1]) # plot slice 1
|
||||
image(multArray[,,2]) # plot slice 2
|
||||
dim(multArray)
|
||||
size(multArray)
|
||||
length(multArray)
|
||||
multArray
|
||||
multArray[,,1] # matrix 1
|
||||
multArray[,,2] # matrix 2
|
||||
image(multArray[,,1]) # plot slice 1
|
||||
image(multArray[,,2]) # plot slice 2
|
||||
image(multArray[,,1]) # plot slice 1
|
||||
image(multArray[,,2]) # plot slice 2
|
||||
## Neuroimaging Informatics Technology Initiative
|
||||
if (!require("fastICA")) install.packages("fastICA")
|
||||
if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI")
|
||||
if (!require("fmri")) install.packages("fmri")
|
||||
# If this fails, try library(devtools) (install.packages("devtools"))
|
||||
# and then install_github(https://github.com/cran/fmri.git)
|
||||
library(fmri)
|
||||
## Neuroimaging Informatics Technology Initiative
|
||||
if (!require("fastICA")) install.packages("fastICA")
|
||||
if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI")
|
||||
install.packages("R.matlab")
|
||||
install.packages("Biostrings")
|
||||
BiocManager::install("Biostrings")
|
||||
BiocManager::install("Biostrings")
|
||||
BiocManager::install("AnalyzeFMRI")
|
||||
BiocManager::install()
|
||||
if (!require("fmri")) install.packages("fmri")
|
||||
if (!require("fmri")) install.packages("aws")
|
||||
if (!require("fmri")) install.packages("gsl")
|
||||
install.packages("gsl")
|
||||
install.packages("GSL")
|
||||
install_github(https://github.com/cran/fmri.git)
|
||||
install_github("https://github.com/cran/fmri.git")
|
||||
# If this fails, try library(devtools) (install.packages("devtools"))
|
||||
# and then install_github(https://github.com/cran/fmri.git)
|
||||
if (!require("devtools")) install.packages("devtools")
|
||||
library(devtools)
|
||||
install_github("https://github.com/cran/fmri.git")
|
||||
install_github("https://github.com/cran/aws.git")
|
||||
install_github("https://github.com/cran/gsl.git")
|
||||
# If this fails, try library(devtools) (insta
|
||||
install.packages("gsl")
|
||||
install.packages("fmri")
|
||||
if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI")
|
||||
if (!require("fastICA")) install.packages("fastICA")
|
||||
library(fastICA)
|
||||
# read in 4d nifti
|
||||
# uses fmri library, takes about 3min to load
|
||||
img <- read.NIFTI("rest_res2standard.nii")
|
||||
library(fmri)
|
||||
# read in 4d nifti
|
||||
# uses fmri library, takes about 3min to load
|
||||
img <- read.NIFTI("rest_res2standard.nii")
|
||||
mask <- img$mask # Boolean mask for brain voxels
|
||||
dim(mask)
|
||||
ttt <- extractData(img) # extract 4d data cube
|
||||
numScans <- dim(ttt)[4]
|
||||
# plot a voxel's time series
|
||||
plot(ttt[30,30,30,],type="l",xlab="time",ylab="activity")
|
||||
length(ttt)
|
||||
ttt
|
||||
dim(ttt)
|
||||
length(ttt)
|
||||
numScans
|
||||
## Plot a 2D Slice
|
||||
yslice <- 35
|
||||
scan2dslice <- ttt[,yslice,,50] # grab 2d slice at t=50
|
||||
image(scan2dslice,main="no masking") # no mask
|
||||
# mask it off
|
||||
slice.mask <- mask[,yslice,]
|
||||
scan2dslice[slice.mask] <- NA # NA's become white
|
||||
image(scan2dslice,main="masked")
|
||||
mask
|
||||
slice.mask
|
||||
## ICA
|
||||
t1 <- Sys.time() # for timing purposes
|
||||
dataMat <- NULL
|
||||
for(t in seq(1,numScans)){
|
||||
scan <- ttt[,,,t]
|
||||
# stretched out the 61x73x61 3d matrix into one row
|
||||
# apply mask and stack
|
||||
dataMat <- rbind(dataMat,scan[mask])
|
||||
}
|
||||
t2 <- Sys.time()
|
||||
difftime(t2,t1) # 3 minutes
|
||||
dim(dataMat)
|
||||
dataMat
|
||||
dataMat[1,]
|
||||
dataMat[99,]
|
||||
## ICA analysis
|
||||
# input X: rows observations (voxels) and cols variables (time)
|
||||
X <- t(dataMat)
|
||||
m <- 20 # specify number of ICA components
|
||||
t1<-Sys.time()
|
||||
f<-fastICA(X,n.comp=m,method="C")
|
||||
t2<-Sys.time()
|
||||
difftime(t2,t1) # 1.23min
|
||||
# S=XKW,
|
||||
# K is a pre-whitening PCA matrix (components by time)
|
||||
# S is the matrix of m ICAs (columns of S are spatial signals)
|
||||
# S has dimensions voxel x components
|
||||
S<-f$S # you can find K and W with $
|
||||
S
|
||||
dim(S)
|
||||
dim(f$K)
|
||||
dim(f$W)
|
||||
ica.comp <- 5 # look at 5th component
|
||||
# plot the 5th time ICA
|
||||
plot(f$K[,ica.comp],type="l",xlab="time",ylab="signal",main="ICA component")
|
||||
# threshold S matrix
|
||||
theta <- 2
|
||||
S[S<=theta] <- NA
|
||||
# turn S back into 4d multidimensional array
|
||||
xdim<-dim(ttt)[1]
|
||||
ydim<-dim(ttt)[2]
|
||||
zdim<-dim(ttt)[3]
|
||||
ica.4dArray <- array(matrix(S,ncol=1),dim=c(xdim,ydim,zdim,m))
|
||||
dim(ica.4dArray) # 61x73x61x10
|
||||
yslice <- 35
|
||||
# grab 2d slice at y=yslice and ica 5
|
||||
ica2dslice <- ica.4dArray[,yslice,,ica.comp]
|
||||
image(ica2dslice,main="ica component (spatial locations)")
|
||||
@ -76,3 +76,86 @@ plot(blocks.norm.subset,voxel.data.vec,
|
||||
abline(voxel.fit)
|
||||
|
||||
|
||||
#### Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA).
|
||||
## example: multi-dimensional array
|
||||
# 2 3x4 matrices
|
||||
multArray <- array(1:24,dim=c(3,4,2))
|
||||
dim(multArray)
|
||||
multArray[,,1] # matrix 1
|
||||
multArray[,,2] # matrix 2
|
||||
image(multArray[,,1]) # plot slice 1
|
||||
image(multArray[,,2]) # plot slice 2
|
||||
|
||||
## Neuroimaging Informatics Technology Initiative
|
||||
if (!require("fastICA")) install.packages("fastICA")
|
||||
if (!require("fmri")) install.packages("fmri")
|
||||
library(fastICA)
|
||||
library(fmri)
|
||||
|
||||
# read in 4d nifti
|
||||
# uses fmri library, takes about 3min to load
|
||||
img <- read.NIFTI("rest_res2standard.nii")
|
||||
|
||||
mask <- img$mask # Boolean mask for brain voxels
|
||||
dim(mask)
|
||||
ttt <- extractData(img) # extract 4d data cube
|
||||
numScans <- dim(ttt)[4]
|
||||
|
||||
# plot a voxel's time series
|
||||
plot(ttt[30,30,30,],type="l",xlab="time",ylab="activity")
|
||||
|
||||
## Plot a 2D Slice
|
||||
yslice <- 35
|
||||
scan2dslice <- ttt[,yslice,,50] # grab 2d slice at t=50
|
||||
image(scan2dslice,main="no masking") # no mask
|
||||
# mask it off
|
||||
slice.mask <- mask[,yslice,]
|
||||
scan2dslice[slice.mask] <- NA # NA's become white
|
||||
image(scan2dslice,main="masked")
|
||||
|
||||
## ICA
|
||||
t1 <- Sys.time() # for timing purposes
|
||||
dataMat <- NULL
|
||||
for(t in seq(1,numScans)){
|
||||
scan <- ttt[,,,t]
|
||||
# stretched out the 61x73x61 3d matrix into one row
|
||||
# apply mask and stack
|
||||
dataMat <- rbind(dataMat,scan[mask])
|
||||
}
|
||||
t2 <- Sys.time()
|
||||
difftime(t2,t1) # 3 minutes
|
||||
dim(dataMat)
|
||||
|
||||
## ICA analysis
|
||||
# input X: rows observations (voxels) and cols variables (time)
|
||||
X <- t(dataMat)
|
||||
m <- 20 # specify number of ICA components
|
||||
t1<-Sys.time()
|
||||
f<-fastICA(X,n.comp=m,method="C")
|
||||
t2<-Sys.time()
|
||||
difftime(t2,t1) # 1.23min
|
||||
# S=XKW,
|
||||
# K is a pre-whitening PCA matrix (components by time)
|
||||
# S is the matrix of m ICAs (columns of S are spatial signals)
|
||||
# S has dimensions voxel x components
|
||||
S<-f$S # you can find K and W with $
|
||||
|
||||
ica.comp <- 5 # look at 5th component
|
||||
# plot the 5th time ICA
|
||||
plot(f$K[,ica.comp],type="l",xlab="time",ylab="signal",main="ICA component")
|
||||
|
||||
# threshold S matrix
|
||||
theta <- 2
|
||||
S[S<=theta] <- NA
|
||||
|
||||
# turn S back into 4d multidimensional array
|
||||
xdim<-dim(ttt)[1]
|
||||
ydim<-dim(ttt)[2]
|
||||
zdim<-dim(ttt)[3]
|
||||
ica.4dArray <- array(matrix(S,ncol=1),dim=c(xdim,ydim,zdim,m))
|
||||
dim(ica.4dArray) # 61x73x61x10
|
||||
yslice <- 35
|
||||
# grab 2d slice at y=yslice and ica 5
|
||||
ica2dslice <- ica.4dArray[,yslice,,ica.comp]
|
||||
image(ica2dslice,main="ica component (spatial locations)")
|
||||
|
||||
|
||||
Binary file not shown.
BIN
Schrick-Noah_CS-6643_Lab-11.pdf
Normal file
BIN
Schrick-Noah_CS-6643_Lab-11.pdf
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user