diff --git a/.Rhistory b/.Rhistory new file mode 100644 index 0000000..43ad527 --- /dev/null +++ b/.Rhistory @@ -0,0 +1,512 @@ +alpha.LM +alpha.ML +degree(g) +sort(degree(g)) +sort(degree(g),decreasing=FALSE) +sort(degree(g),decreasing=F) +sort(degree(g),decreasing=false) +sort(degree(g), decreasing = TRUE) +head(sort(degree(g), decreasing = TRUE)) +stddev(degree(g)) +sd(degree(g)) +tail(sort(degree(g), decreasing = TRUE)) +plot(log(g.breaks.clean), log(g.probs.clean)) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3) +plot(log(g.breaks.clean), log(g.probs.clean)) +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +plot(log(g.breaks.clean), log(g.probs.clean)) +BiocManager::install() +simDats <- createSimulation2(data.type = "discrete", avg.maf = 0.2, sim.type = "mainEffect", +pct.train = 0.5, pct.holdout = 0.5, pct.validation = 0, +main.bias = 0.4, pct.signals = 0.2) +# npdro::createSimulation2() example for gwas simulation +library(npdro) +# npdro::createSimulation2() example for gwas simulation +if (!require("npdro")) install.packages("npdro") +library(npdro) +# npdro::createSimulation2() example for gwas simulation +install_github("insilico/npdro") +# npdro::createSimulation2() example for gwas simulation +if (!require("devtools")) install.packages("devtools") +library(devtools) +install_github("insilico/npdro") +# npdro::createSimulation2() example for gwas simulation +if (!require("devtools")) install.packages("devtools") +#### Part A: Haemodynamic response functions (HRF) and block design +## Plot Basic HRF from 0-20s +hq <- function(t,q=4){ +# q=4 or 5, where 5 has more of a delay +return (t^q * exp(-t)/(q^q * exp(-q))) +} +# use seq to create vector time and use hq to create hrf vectors +time <- seq(1,20) +time +# use seq to create vector time and use hq to create hrf vectors +time <- seq(0,20) +hq +# use seq to create vector time and use hq to create hrf vectors +time <- seq(0,20) +hrf1 <- hq(time) +hrf2 <- hq(time, 5) +# plot +plot(time,hrf1,type="l") +lines(time,hrf2,col="red") +## Deconvolve with task onset times +# grabbed from afni c code +# basis_block_hrf4 from 3dDeconvolve.c +HRF <- function(t, d){ +if (t<0){ +y=0.0 +}else{ +y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4)) +} +return(y) +} +t=seq(0,360,len=360) +onsets=c(14,174,254) +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +plot(blocks.model, type="l") +lines(time,hrf1,col="red") +pwd +ls +voxel_time <- scan("059_069_025.1D", character(), quote = "\n") +## Set Working Directory to file directory - RStudio approach +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) +voxel_time <- scan("059_069_025.1D", character(), quote = "\n") +voxel_time +plot(blocks.model, type="l") +lines(voxel_time,hrf1,col="red") +voxel_time <- scan("059_069_025.1D", character(), quote = "\n") +t=seq(0,max(voxel_time)) +blocks.model = double() +for (curr_t in voxel_time){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +for (curr_t in t){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in voxel_time){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +voxel_time +onsets +class(onsets) +class(voxel_time) +voxel_time <- as.numeric(scan("059_069_025.1D", character(), quote = "\n")) +t=seq(0,max(voxel_time)) +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in voxel_time){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +## Plot voxel time series data and the block design curve +voxel.data <- read.delim("059_069_025.1D") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# normalize the height of the blocks model +blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) +lines(blocks.normal,type="l",col="red") +# regression +length(blocks.normal) # too long +dim(voxel.data)[1] +# grab elements from blocks.normal to make a vector same as data +blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])] +length(blocks.norm.subset) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# normalize the height of the blocks model +blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) +lines(blocks.normal,type="l",col="red") +# regression +length(blocks.normal) # too long +dim(voxel.data)[1] +# grab elements from blocks.normal to make a vector same as data +blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])] +length(blocks.norm.subset) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +# use lm to create voxel.fit <- lm... +voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +# use abline(voxel.fit) to overlay a line with fit coefficients +abline(voxel.fit) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +length(blocks.norm.subset) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +length(voxel.data.vec) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +blocks.norm.subset +voxel.data.vec +voxel.fit <- lm(blocks.norm.subet ~ voxel.data.vec) +voxel.fit <- lm(blocks.norm.subset ~ voxel.data.vec) +# use abline(voxel.fit) to overlay a line with fit coefficients +abline(voxel.fit) +## Plot voxel time series data and the block design curve +voxel.data <- read.delim("059_069_025.1D") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# use lm to create voxel.fit <- lm... +voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +# use abline(voxel.fit) to overlay a line with fit coefficients +abline(voxel.fit) +voxel.fitr +voxel.fit +voxel.data +blocks.normal +blocks.model +max(blocks.model) +t=seq(0,360,len=360) +onsets=c(14,174,254) +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +## Plot voxel time series data and the block design curve +voxel.data <- read.delim("059_069_025.1D") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# normalize the height of the blocks model +blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) +lines(blocks.normal,type="l",col="red") +# regression +length(blocks.normal) # too long +# Lab 11 for the University of Tulsa's CS-6643 Bioinformatics Course +# Introduction to fMRI Analysis and ICA +# Professor: Dr. McKinney, Fall 2022 +# Noah L. Schrick - 1492657 +## Set Working Directory to file directory - RStudio approach +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) +#### Part A: Haemodynamic response functions (HRF) and block design +## Plot Basic HRF from 0-20s +hq <- function(t,q=4){ +# q=4 or 5, where 5 has more of a delay +return (t^q * exp(-t)/(q^q * exp(-q))) +} +# use seq to create vector time and use hq to create hrf vectors +time <- seq(0,20) +hrf1 <- hq(time) +hrf2 <- hq(time, 5) +# plot +plot(time,hrf1,type="l") +lines(time,hrf2,col="red") +## Deconvolve with task onset times +# grabbed from afni c code +# basis_block_hrf4 from 3dDeconvolve.c +HRF <- function(t, d){ +if (t<0){ +y=0.0 +}else{ +y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4)) +} +return(y) +} +t=seq(0,360,len=360) +onsets=c(14,174,254) +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +## Plot voxel time series data and the block design curve +voxel.data <- read.delim("059_069_025.1D") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# normalize the height of the blocks model +blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) +lines(blocks.normal,type="l",col="red") +# regression +length(blocks.normal) # too long +dim(voxel.data)[1] +# grab elements from blocks.normal to make a vector same as data +blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])] +length(blocks.norm.subset) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +# use lm to create voxel.fit <- lm... +voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +# use abline(voxel.fit) to overlay a line with fit coefficients +abline(voxel.fit) +# Lab 11 for the University of Tulsa's CS-6643 Bioinformatics Course +# Introduction to fMRI Analysis and ICA +# Professor: Dr. McKinney, Fall 2022 +# Noah L. Schrick - 1492657 +## Set Working Directory to file directory - RStudio approach +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) +#### Part A: Haemodynamic response functions (HRF) and block design +## Plot Basic HRF from 0-20s +hq <- function(t,q=4){ +# q=4 or 5, where 5 has more of a delay +return (t^q * exp(-t)/(q^q * exp(-q))) +} +# use seq to create vector time and use hq to create hrf vectors +time <- seq(0,20) +hrf1 <- hq(time) +hrf2 <- hq(time, 5) +# plot +plot(time,hrf1,type="l") +lines(time,hrf2,col="red") +## Deconvolve with task onset times +# grabbed from afni c code +# basis_block_hrf4 from 3dDeconvolve.c +HRF <- function(t, d){ +if (t<0){ +y=0.0 +}else{ +y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4)) +} +return(y) +} +t=seq(0,360,len=360) +onsets=c(14,174,254) +blocks.model = double() +for (curr_t in t){ +summed_hrf=0.0 +for (start in onsets){ +summed_hrf=summed_hrf+HRF(curr_t-start,20) +} +blocks.model = c(blocks.model,summed_hrf) +} +plot(blocks.model,type="l") +## Plot voxel time series data and the block design curve +voxel.data <- read.delim("059_069_025.1D") +plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), +type="l", xlab="time",ylab="intensity") +# normalize the height of the blocks model +blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) +lines(blocks.normal,type="l",col="red") +# regression +length(blocks.normal) # too long +dim(voxel.data)[1] +# grab elements from blocks.normal to make a vector same as data +blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])] +length(blocks.norm.subset) +voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) +# use lm to create voxel.fit <- lm... +voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset) +plot(blocks.norm.subset,voxel.data.vec, +xlab="block model",ylab="voxel data",main="regression fit") +# use abline(voxel.fit) to overlay a line with fit coefficients +abline(voxel.fit) +blocks.model +count(blocks.model > 1) +which(blocks.model > 1) +sum(blocks.model < 1) +length(blocks.model) +100* sum(blocks.model < 1)/length(blocks.model) +#### Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA). +## example: multi-dimensional array +# 2 3x4 matrices +multArray <- array(1:24,dim=c(3,4,2)) +dim(multArray) +multArray[,,1] # matrix 1 +multArray[,,2] # matrix 2 +image(multArray[,,1]) # plot slice 1 +image(multArray[,,2]) # plot slice 2 +dim(multArray) +size(multArray) +length(multArray) +multArray +multArray[,,1] # matrix 1 +multArray[,,2] # matrix 2 +image(multArray[,,1]) # plot slice 1 +image(multArray[,,2]) # plot slice 2 +image(multArray[,,1]) # plot slice 1 +image(multArray[,,2]) # plot slice 2 +## Neuroimaging Informatics Technology Initiative +if (!require("fastICA")) install.packages("fastICA") +if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI") +if (!require("fmri")) install.packages("fmri") +# If this fails, try library(devtools) (install.packages("devtools")) +# and then install_github(https://github.com/cran/fmri.git) +library(fmri) +## Neuroimaging Informatics Technology Initiative +if (!require("fastICA")) install.packages("fastICA") +if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI") +install.packages("R.matlab") +install.packages("Biostrings") +BiocManager::install("Biostrings") +BiocManager::install("Biostrings") +BiocManager::install("AnalyzeFMRI") +BiocManager::install() +if (!require("fmri")) install.packages("fmri") +if (!require("fmri")) install.packages("aws") +if (!require("fmri")) install.packages("gsl") +install.packages("gsl") +install.packages("GSL") +install_github(https://github.com/cran/fmri.git) +install_github("https://github.com/cran/fmri.git") +# If this fails, try library(devtools) (install.packages("devtools")) +# and then install_github(https://github.com/cran/fmri.git) +if (!require("devtools")) install.packages("devtools") +library(devtools) +install_github("https://github.com/cran/fmri.git") +install_github("https://github.com/cran/aws.git") +install_github("https://github.com/cran/gsl.git") +# If this fails, try library(devtools) (insta +install.packages("gsl") +install.packages("fmri") +if (!require("AnalyzeFMRI")) install.packages("AnalyzeFMRI") +if (!require("fastICA")) install.packages("fastICA") +library(fastICA) +# read in 4d nifti +# uses fmri library, takes about 3min to load +img <- read.NIFTI("rest_res2standard.nii") +library(fmri) +# read in 4d nifti +# uses fmri library, takes about 3min to load +img <- read.NIFTI("rest_res2standard.nii") +mask <- img$mask # Boolean mask for brain voxels +dim(mask) +ttt <- extractData(img) # extract 4d data cube +numScans <- dim(ttt)[4] +# plot a voxel's time series +plot(ttt[30,30,30,],type="l",xlab="time",ylab="activity") +length(ttt) +ttt +dim(ttt) +length(ttt) +numScans +## Plot a 2D Slice +yslice <- 35 +scan2dslice <- ttt[,yslice,,50] # grab 2d slice at t=50 +image(scan2dslice,main="no masking") # no mask +# mask it off +slice.mask <- mask[,yslice,] +scan2dslice[slice.mask] <- NA # NA's become white +image(scan2dslice,main="masked") +mask +slice.mask +## ICA +t1 <- Sys.time() # for timing purposes +dataMat <- NULL +for(t in seq(1,numScans)){ +scan <- ttt[,,,t] +# stretched out the 61x73x61 3d matrix into one row +# apply mask and stack +dataMat <- rbind(dataMat,scan[mask]) +} +t2 <- Sys.time() +difftime(t2,t1) # 3 minutes +dim(dataMat) +dataMat +dataMat[1,] +dataMat[99,] +## ICA analysis +# input X: rows observations (voxels) and cols variables (time) +X <- t(dataMat) +m <- 20 # specify number of ICA components +t1<-Sys.time() +f<-fastICA(X,n.comp=m,method="C") +t2<-Sys.time() +difftime(t2,t1) # 1.23min +# S=XKW, +# K is a pre-whitening PCA matrix (components by time) +# S is the matrix of m ICAs (columns of S are spatial signals) +# S has dimensions voxel x components +S<-f$S # you can find K and W with $ +S +dim(S) +dim(f$K) +dim(f$W) +ica.comp <- 5 # look at 5th component +# plot the 5th time ICA +plot(f$K[,ica.comp],type="l",xlab="time",ylab="signal",main="ICA component") +# threshold S matrix +theta <- 2 +S[S<=theta] <- NA +# turn S back into 4d multidimensional array +xdim<-dim(ttt)[1] +ydim<-dim(ttt)[2] +zdim<-dim(ttt)[3] +ica.4dArray <- array(matrix(S,ncol=1),dim=c(xdim,ydim,zdim,m)) +dim(ica.4dArray) # 61x73x61x10 +yslice <- 35 +# grab 2d slice at y=yslice and ica 5 +ica2dslice <- ica.4dArray[,yslice,,ica.comp] +image(ica2dslice,main="ica component (spatial locations)") diff --git a/Schrick-Noah_CS-6643_Lab-11.R b/Schrick-Noah_CS-6643_Lab-11.R index 45e98ea..20de550 100644 --- a/Schrick-Noah_CS-6643_Lab-11.R +++ b/Schrick-Noah_CS-6643_Lab-11.R @@ -76,3 +76,86 @@ plot(blocks.norm.subset,voxel.data.vec, abline(voxel.fit) +#### Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA). +## example: multi-dimensional array +# 2 3x4 matrices +multArray <- array(1:24,dim=c(3,4,2)) +dim(multArray) +multArray[,,1] # matrix 1 +multArray[,,2] # matrix 2 +image(multArray[,,1]) # plot slice 1 +image(multArray[,,2]) # plot slice 2 + +## Neuroimaging Informatics Technology Initiative +if (!require("fastICA")) install.packages("fastICA") +if (!require("fmri")) install.packages("fmri") +library(fastICA) +library(fmri) + +# read in 4d nifti +# uses fmri library, takes about 3min to load +img <- read.NIFTI("rest_res2standard.nii") + +mask <- img$mask # Boolean mask for brain voxels +dim(mask) +ttt <- extractData(img) # extract 4d data cube +numScans <- dim(ttt)[4] + +# plot a voxel's time series +plot(ttt[30,30,30,],type="l",xlab="time",ylab="activity") + +## Plot a 2D Slice +yslice <- 35 +scan2dslice <- ttt[,yslice,,50] # grab 2d slice at t=50 +image(scan2dslice,main="no masking") # no mask +# mask it off +slice.mask <- mask[,yslice,] +scan2dslice[slice.mask] <- NA # NA's become white +image(scan2dslice,main="masked") + +## ICA +t1 <- Sys.time() # for timing purposes +dataMat <- NULL +for(t in seq(1,numScans)){ + scan <- ttt[,,,t] + # stretched out the 61x73x61 3d matrix into one row + # apply mask and stack + dataMat <- rbind(dataMat,scan[mask]) +} +t2 <- Sys.time() +difftime(t2,t1) # 3 minutes +dim(dataMat) + +## ICA analysis +# input X: rows observations (voxels) and cols variables (time) +X <- t(dataMat) +m <- 20 # specify number of ICA components +t1<-Sys.time() +f<-fastICA(X,n.comp=m,method="C") +t2<-Sys.time() +difftime(t2,t1) # 1.23min +# S=XKW, +# K is a pre-whitening PCA matrix (components by time) +# S is the matrix of m ICAs (columns of S are spatial signals) +# S has dimensions voxel x components +S<-f$S # you can find K and W with $ + +ica.comp <- 5 # look at 5th component +# plot the 5th time ICA +plot(f$K[,ica.comp],type="l",xlab="time",ylab="signal",main="ICA component") + +# threshold S matrix +theta <- 2 +S[S<=theta] <- NA + +# turn S back into 4d multidimensional array +xdim<-dim(ttt)[1] +ydim<-dim(ttt)[2] +zdim<-dim(ttt)[3] +ica.4dArray <- array(matrix(S,ncol=1),dim=c(xdim,ydim,zdim,m)) +dim(ica.4dArray) # 61x73x61x10 +yslice <- 35 +# grab 2d slice at y=yslice and ica 5 +ica2dslice <- ica.4dArray[,yslice,,ica.comp] +image(ica2dslice,main="ica component (spatial locations)") + diff --git a/Schrick-Noah_CS-6643_Lab-11.docx b/Schrick-Noah_CS-6643_Lab-11.docx index 6fe8202..73e1508 100644 Binary files a/Schrick-Noah_CS-6643_Lab-11.docx and b/Schrick-Noah_CS-6643_Lab-11.docx differ diff --git a/Schrick-Noah_CS-6643_Lab-11.pdf b/Schrick-Noah_CS-6643_Lab-11.pdf new file mode 100644 index 0000000..2aa6b28 Binary files /dev/null and b/Schrick-Noah_CS-6643_Lab-11.pdf differ