QM-7063-Learning-Practice-9/Schrick-Noah_Learning-Practice-9.ipynb
2023-04-01 19:21:26 -05:00

160 lines
2.7 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Learning Practice 9 for the University of Tulsa's QM-7063 Data Mining Course\n",
"# Support Vector Machines\n",
"# Professor: Dr. Abdulrashid, Spring 2023\n",
"# Noah L. Schrick - 1492657"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Imports"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# a. \n",
"Numerisize the dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# a"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# b. \n",
"Transform the data by either normalizing or standardizing it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# b."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# c. \n",
"Use train, test, and split function to split the data into training and testing sets."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# c."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# d.\n",
"Select your preferred kernel type and determine the kernel values by using either grid-search or v-fold cross validation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# d."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# e.\n",
"Run a SVM classifier using identified kernel values found in (d)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# e."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# f.\n",
"Obtain the confusion matrix."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# f. "
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# g.\n",
"What is the overall error for the validation set?"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# g. "
]
}
],
"metadata": {
"language_info": {
"name": "python"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}