From 57d398b6bcf66c83c7fea36c552a0bad638cd36d Mon Sep 17 00:00:00 2001 From: noah Date: Sat, 1 Apr 2023 19:21:26 -0500 Subject: [PATCH] Adding notebook skeleton --- Schrick-Noah_Learning-Practice-9.ipynb | 159 +++++++++++++++++++++++++ 1 file changed, 159 insertions(+) create mode 100644 Schrick-Noah_Learning-Practice-9.ipynb diff --git a/Schrick-Noah_Learning-Practice-9.ipynb b/Schrick-Noah_Learning-Practice-9.ipynb new file mode 100644 index 0000000..6f64da5 --- /dev/null +++ b/Schrick-Noah_Learning-Practice-9.ipynb @@ -0,0 +1,159 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Learning Practice 9 for the University of Tulsa's QM-7063 Data Mining Course\n", + "# Support Vector Machines\n", + "# Professor: Dr. Abdulrashid, Spring 2023\n", + "# Noah L. Schrick - 1492657" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Imports" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# a. \n", + "Numerisize the dataset" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# a" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# b. \n", + "Transform the data by either normalizing or standardizing it." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# b." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# c. \n", + "Use train, test, and split function to split the data into training and testing sets." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# c." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# d.\n", + "Select your preferred kernel type and determine the kernel values by using either grid-search or v-fold cross validation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# d." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# e.\n", + "Run a SVM classifier using identified kernel values found in (d)." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# e." + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# f.\n", + "Obtain the confusion matrix." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# f. " + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# g.\n", + "What is the overall error for the validation set?" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# g. " + ] + } + ], + "metadata": { + "language_info": { + "name": "python" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}