48 lines
1.1 KiB
Plaintext
48 lines
1.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Learning Practice 8 for the University of Tulsa's QM-7063 Data Mining Course\n",
|
|
"# K-Nearest Neighbor and Naive Bayes\n",
|
|
"# Professor: Dr. Abdulrashid, Spring 2023\n",
|
|
"# Noah L. Schrick - 1492657"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"# Imports\n",
|
|
"\n",
|
|
"%matplotlib inline\n",
|
|
"\n",
|
|
"from pathlib import Path\n",
|
|
"\n",
|
|
"import pandas as pd\n",
|
|
"from sklearn.model_selection import train_test_split\n",
|
|
"from sklearn.naive_bayes import MultinomialNB\n",
|
|
"import matplotlib.pylab as plt\n",
|
|
"from dmba import classificationSummary, gainsChart\n",
|
|
"\n",
|
|
"from sklearn import preprocessing\n",
|
|
"from sklearn.metrics import accuracy_score\n",
|
|
"from sklearn.neighbors import NearestNeighbors, KNeighborsClassifier"
|
|
]
|
|
}
|
|
],
|
|
"metadata": {
|
|
"language_info": {
|
|
"name": "python"
|
|
},
|
|
"orig_nbformat": 4
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|