diff --git a/.~lock.Schrick-Noah_Learning-Practice-5.odt# b/.~lock.Schrick-Noah_Learning-Practice-5.odt# new file mode 100644 index 0000000..555ad01 --- /dev/null +++ b/.~lock.Schrick-Noah_Learning-Practice-5.odt# @@ -0,0 +1 @@ +,noah,NovaArchSys,28.02.2023 13:03,file:///home/noah/.config/libreoffice/4; \ No newline at end of file diff --git a/Lecture-Work.ipynb b/Lecture-Work.ipynb index 2e97eed..45a018b 100644 --- a/Lecture-Work.ipynb +++ b/Lecture-Work.ipynb @@ -45,36 +45,20 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 1, "metadata": { "scrolled": false }, "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "intercept -1319.3543800411808\n", - " Predictor coefficient\n", - "0 Age_08_04 -140.748761\n", - "1 KM -0.017840\n", - "2 HP 36.103419\n", - "3 Met_Color 84.281830\n", - "4 Automatic 416.781954\n", - "5 CC 0.017737\n", - "6 Doors -50.657863\n", - "7 Quarterly_Tax 13.625325\n", - "8 Weight 13.038711\n", - "9 Fuel_Type_Diesel 1066.464681\n", - "10 Fuel_Type_Petrol 2310.249543\n", - "\n", - "Regression statistics\n", - "\n", - " Mean Error (ME) : 0.0000\n", - " Root Mean Squared Error (RMSE) : 1400.5823\n", - " Mean Absolute Error (MAE) : 1046.9072\n", - " Mean Percentage Error (MPE) : -1.0223\n", - "Mean Absolute Percentage Error (MAPE) : 9.2994\n" + "ename": "NameError", + "evalue": "name 'pd' is not defined", + "output_type": "error", + "traceback": [ + "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", + "\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", + "Cell \u001b[0;32mIn[1], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[39m# Reduce data frame to the top 1000 rows and select columns for regression analysis\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m car_df \u001b[39m=\u001b[39m pd\u001b[39m.\u001b[39mread_csv(\u001b[39m'\u001b[39m\u001b[39mToyotaCorolla.csv\u001b[39m\u001b[39m'\u001b[39m)\n\u001b[1;32m 3\u001b[0m car_df \u001b[39m=\u001b[39m car_df\u001b[39m.\u001b[39miloc[\u001b[39m0\u001b[39m:\u001b[39m1000\u001b[39m]\n\u001b[1;32m 5\u001b[0m predictors \u001b[39m=\u001b[39m [\u001b[39m'\u001b[39m\u001b[39mAge_08_04\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mKM\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mFuel_Type\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mHP\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mMet_Color\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mAutomatic\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mCC\u001b[39m\u001b[39m'\u001b[39m, \n\u001b[1;32m 6\u001b[0m \u001b[39m'\u001b[39m\u001b[39mDoors\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mQuarterly_Tax\u001b[39m\u001b[39m'\u001b[39m, \u001b[39m'\u001b[39m\u001b[39mWeight\u001b[39m\u001b[39m'\u001b[39m]\n", + "\u001b[0;31mNameError\u001b[0m: name 'pd' is not defined" ] } ], @@ -208,7 +192,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFFRJREFUeJzt3X+QXWV9x/H3l0QwEiTB4BoTNFCoFUz9wYp06LQbUImAwh/qYBknVDSdqh1a09Eg0zpOtQMihbHqYKqW0NEGRBEGxx9IWX/MCEhUjIhIhAgBTEQSZJVao9/+cZ/ITbi7e/fuvdln732/Zu7sOc/5cZ/77D372XPOc58bmYkkSbXZb6YrIElSKwaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlNQDEXFHRIyMs2wkIrZ26XlGI+LN3diXVJu5M10BaaZFxBZgCPgdMAZ8CXh7Zo51us/MPKY7tZMGl2dQUsOrM3M+8CLgxcB5M1wfaeAZUFKTzPwZ8GUaQUVEHBARH4yI+yJiW0RcFhHzyrJFEXF9ROyMiEci4hsRsV9ZtiUiXl6m50XE5RGxIyJ+CLy0+TkjIiPiyKb5yyPifWV6YXmOn5ftr4+Ipa3qHhFHRsTXIuLRiHg4Iq7sQRNJ+4wBJTUpf/xfBWwuRRcCf0wjsI4ElgD/XJatAbYCh9K4RPhuoNXYYe8B/qg8TgZWTaFK+wH/CTwXeA7wOPDhcdb9F+ArwEJgKfDvU3geqToGlNTw+Yh4DLgf2A68JyICeAvwD5n5SGY+BvwrcGbZ5rfAYuC5mfnbzPxGth7c8vXA+8s+7gc+1G6lMvMXmfnZzPx1ef73A385zuq/pRFkz87M/83Mb7b7PFKNDCip4YzMPAgYAf4EWETjzOhpwMZyGW8njQ4Uh5ZtLqJxpvWViLgnItaOs+9n0wi+3X7abqUi4mkR8bGI+GlE/BL4OrAgIua0WP2dQAC3ll6Eb2r3eaQaGVBSk8z8GnA58EHgYRqX1I7JzAXlcXDpTEFmPpaZazLzCODVwDsi4qQWu30IOKxp/jl7Lf81jSDc7VlN02uA5wEvy8ynA39RyqNF3X+WmW/JzGcDfwN8tPneljTbGFDSk10KvAL4U+A/gEsi4pkAEbEkIk4u06eVjgkB/JJGN/XftdjfVcB5pcPDUuDv9lr+PeCvImJORKxkz0t4B9EIyZ0RcQiN+1ktRcTrmjpQ7KBxP6xVfaRZwYCS9pKZPweuAP4JeBeNy3g3l0tsX6VxRgNwVJkfA74FfDQzR1vs8r00LuvdS6MTw3/ttfxcGmdgO4GzgM83LbsUmEfjbO5mGpcYx/NS4JaIGAOuA87NzHsnf8VSncIvLJQk1cgzKElSlQwoSVKVDChJUpXaGiy2DKb5GI0eQbsyc7j0KLoSWAZsAV6fmTt6U01J0qBpq5NECajhzHy4qewDwCOZeUH5gOLCzHzXRPtZtGhRLlu2bHo1nsCvfvUrDjzwwJ7tvx/ZZp2x3Tpju01dP7bZxo0bH87MQydbbzpft3E6jU/dA6wHRml0yR3XsmXLuO2226bxlBMbHR1lZGRk0vX0BNusM7ZbZ2y3qevHNouItkZTafcM6l6e+ODfxzJzXUTszMwFTevsyMyFLbZdDawGGBoaOnbDhg1tvoSpGxsbY/78+T3bfz+yzTpju3XGdpu6fmyzFStWbMzM4cnWa/cM6oTMfLB8mv6GiPhRuxXJzHXAOoDh4eHs5X8C/fifRq/ZZp2x3Tpju03dILdZW734MvPB8nM7cA1wHLAtIhYDlJ/be1VJSdLgmTSgIuLAiDho9zTwSuAHNIZS2f29NquAa3tVSUnS4GnnEt8QcE1jPEzmAp/OzC9FxLeBqyLiHOA+4HW9q6YkadBMGlCZeQ/wwhblvwBafbWAJEnT5kgSkqQqGVCSpCoZUJKkKhlQkqQqTWeoI2lWWLb2Cx1tt+WCU7tcE0lT4RmUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUp+UFcax0Qf8F2zfBdnd/gB4In44WDpCZ5BSZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKq5GjmUkUmGkF9Io6Crn7kGZQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKbQdURMyJiO9GxPVl/vCIuCUi7o6IKyNi/95VU5I0aKZyBnUucGfT/IXAJZl5FLADOKebFZMkDba2AioilgKnAh8v8wGcCFxdVlkPnNGLCkqSBlO7Z1CXAu8Efl/mnwHszMxdZX4rsKTLdZMkDbBJRzOPiNOA7Zm5MSJGdhe3WDXH2X41sBpgaGiI0dHRzmrahrGxsZ7uvx8NQputWb5r8pWmaGheb/bbqdnyOxyE91u3DXKbtfN1GycAr4mIU4CnAk+ncUa1ICLmlrOopcCDrTbOzHXAOoDh4eEcGRnpRr1bGh0dpZf770eD0GZnd/gVFhNZs3wXF2+q59tqtpw1MtNVaMsgvN+6bZDbbNJLfJl5XmYuzcxlwJnA/2TmWcBNwGvLaquAa3tWS0nSwJnO56DeBbwjIjbTuCf1ie5USZKkKX6jbmaOAqNl+h7guO5XSWqt02+blTQ7OZKEJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSnNnugKSZs6ytV/oaLstF5za5ZpIT+YZlCSpSpMGVEQ8NSJujYjbI+KOiHhvKT88Im6JiLsj4sqI2L/31ZUkDYp2zqB+A5yYmS8EXgSsjIjjgQuBSzLzKGAHcE7vqilJGjSTBlQ2jJXZp5RHAicCV5fy9cAZPamhJGkgRWZOvlLEHGAjcCTwEeAi4ObMPLIsPwz4Yma+oMW2q4HVAENDQ8du2LChe7Xfy9jYGPPnz+/Z/vvRbGqzTQ88OtNV+IOhebDt8ZmuxROWLzm4o+06bdNOn282vd9q0Y9ttmLFio2ZOTzZem314svM3wEviogFwDXA81utNs6264B1AMPDwzkyMtLOU3ZkdHSUXu6/H82mNju7wx5nvbBm+S4u3lRPJ9gtZ410tF2nbdrp882m91stBrnNptSLLzN3AqPA8cCCiNh9hC4FHuxu1SRJg6ydXnyHljMnImIe8HLgTuAm4LVltVXAtb2qpCRp8LRzjWIxsL7ch9oPuCozr4+IHwIbIuJ9wHeBT/SwnpKkATNpQGXm94EXtyi/BziuF5WSJMmRJCRJVTKgJElVMqAkSVWq54MckjrW6ajkUs08g5IkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyQ/qap/zQ6WS2uEZlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUqTBlREHBYRN0XEnRFxR0ScW8oPiYgbIuLu8nNh76srSRoU7ZxB7QLWZObzgeOBt0XE0cBa4MbMPAq4scxLktQVkwZUZj6Umd8p048BdwJLgNOB9WW19cAZvaqkJGnwRGa2v3LEMuDrwAuA+zJzQdOyHZn5pMt8EbEaWA0wNDR07IYNG6ZZ5fGNjY0xf/78nu2/H81Em2164NF9+ny9MDQPtj0+07WYOcuXHNzRdh6jU9ePbbZixYqNmTk82XptB1REzAe+Brw/Mz8XETvbCahmw8PDedttt7X1fJ0YHR1lZGSkZ/vvRzPRZsvWfmGfPl8vrFm+i4s3zZ3pasyYLRec2tF2HqNT149tFhFtBVRbvfgi4inAZ4FPZebnSvG2iFhcli8GtndaWUmS9tZOL74APgHcmZn/1rToOmBVmV4FXNv96kmSBlU71yhOAN4IbIqI75WydwMXAFdFxDnAfcDrelNFSdIgmjSgMvObQIyz+KTuVkeSpAZHkpAkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFXJgJIkVcmAkiRVaXBHu9S09cOgr5Lq5RmUJKlKBpQkqUoGlCSpSgaUJKlKdpKQNGWddpC5fOWBXa6J+plnUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQq+Y266vjbUSWplzyDkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFVp0oCKiE9GxPaI+EFT2SERcUNE3F1+LuxtNSVJg6adM6jLgZV7la0FbszMo4Aby7wkSV0zaUBl5teBR/YqPh1YX6bXA2d0uV6SpAEXmTn5ShHLgOsz8wVlfmdmLmhaviMzW17mi4jVwGqAoaGhYzds2NCFarc2NjbG/Pnze7b/2m164NEpbzM0D7Y93oPK9DnbrTOHHzxnoI/RTvTj37UVK1ZszMzhydbr+UgSmbkOWAcwPDycIyMjPXuu0dFRern/2p3dwYgQa5bv4uJNDigyVbZbZy5feeBAH6OdGOS/a5324tsWEYsBys/t3auSJEmdB9R1wKoyvQq4tjvVkSSpoZ1u5v8NfAt4XkRsjYhzgAuAV0TE3cAryrwkSV0z6UX0zHzDOItO6nJdJPW5TQ882tG90i0XnNqD2qh2jiQhSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSXwlaoWUdjPYsSf3GMyhJUpUMKElSlQwoSVKVDChJUpXsJCGpb3Xa4civmK+DZ1CSpCoZUJKkKhlQkqQqeQ+qh/zArdQdHkuDyTMoSVKVDChJUpUMKElSlQwoSVKVDChJUpUMKElSlQwoSVKVDChJUpUMKElSlWbdSBITfaJ8zfJdnD3BckcoltSOfh8Ffba8Ps+gJElVMqAkSVUyoCRJVZp196CmwxGRJfVSL/7GTHRvfbbc8+qUZ1CSpCpNK6AiYmVE3BURmyNibbcqJUlSxwEVEXOAjwCvAo4G3hARR3erYpKkwTadM6jjgM2ZeU9m/h+wATi9O9WSJA26yMzONox4LbAyM99c5t8IvCwz377XequB1WX2ecBdnVd3UouAh3u4/35km3XGduuM7TZ1/dhmz83MQydbaTq9+KJF2ZPSLjPXAeum8Txti4jbMnN4XzxXv7DNOmO7dcZ2m7pBbrPpXOLbChzWNL8UeHB61ZEkqWE6AfVt4KiIODwi9gfOBK7rTrUkSYOu40t8mbkrIt4OfBmYA3wyM+/oWs06s08uJfYZ26wztltnbLepG9g267iThCRJveRIEpKkKhlQkqQqzbqAioh/jIiMiEVlPiLiQ2W4pe9HxEua1l0VEXeXx6qm8mMjYlPZ5kMR0arLfF+IiIsi4kelba6JiAVNy84rbXBXRJzcVN5yCKvSIeaW0p5Xls4xA8XhvfYUEYdFxE0RcWdE3BER55byQyLihvJeuSEiFpbyKR+v/Soi5kTEdyPi+jLf8viKiAPK/OayfFnTPloew30jM2fNg0a39i8DPwUWlbJTgC/S+FzW8cAtpfwQ4J7yc2GZXliW3Qr8Wdnmi8CrZvq19bDNXgnMLdMXAheW6aOB24EDgMOBn9Do7DKnTB8B7F/WObpscxVwZpm+DPjbmX59+7gtx22bQX0Ai4GXlOmDgB+X99YHgLWlfG3T+27Kx2u/PoB3AJ8Gri/zLY8v4K3AZWX6TODKMt3yGJ7p19XNx2w7g7oEeCd7fiD4dOCKbLgZWBARi4GTgRsy85HM3AHcAKwsy56emd/Kxm/5CuCMffsy9p3M/Epm7iqzN9P4vBo02m1DZv4mM+8FNtMYvqrlEFblLPNE4Oqy/Xr6uN3G4fBee8nMhzLzO2X6MeBOYAmNdllfVmt+r0zpeN2HL2WfioilwKnAx8v8RMdXc1teDZxU1h/vGO4bsyagIuI1wAOZeftei5YA9zfNby1lE5VvbVE+CN5E479XmHq7PQPY2RR2g9Ruu43XNgLKpacXA7cAQ5n5EDRCDHhmWW2q77t+dSmNf7Z/X+YnOr7+0DZl+aNl/b5vs6q+sDAivgo8q8Wi84F307hc9aTNWpRlB+Wz1kTtlpnXlnXOB3YBn9q9WYv1k9b/tPRlu3XANhhHRMwHPgv8fWb+coLbugNzXI4nIk4DtmfmxogY2V3cYtWcZFnft1lVAZWZL29VHhHLaVxjvb288ZcC34mI4xh/yKWtwMhe5aOlfGmL9Wet8dptt3LD+TTgpHJZEyYeqqpV+cM0LsfMLf/Fzfp264DDe7UQEU+hEU6fyszPleJtEbE4Mx8ql/C2l/KpHq/96ATgNRFxCvBU4Ok0zqjGO752t9nWiJgLHAw8wiC8H2f6JlgnD2ALT3SSOJU9b7reWsoPAe6lccN1YZk+pCz7dll3dyeJU2b6NfWwrVYCPwQO3av8GPa8wXoPjU4Ac8v04TzREeCYss1n2PMm7ltn+vXt47Yct20G9VGOoSuAS/cqv4g9O0l8oExP+Xjt5weNUN7dSaLl8QW8jT07SVxVplsewzP9mrraPjNdgQ5/qc0BFTS+OPEnwCZguGm9N9G4cbgZ+Oum8mHgB2WbD1NG1OjHR3nt9wPfK4/LmpadX9rgLpp6MtLoafXjsuz8pvIjaPSA3FwOpgNm+vXNQHu2bJtBfQB/TuOy0veb3mOn0LhHciNwd/m5+5/DKR+v/fzYK6BaHl80zrI+U8pvBY5o2r7lMdwvD4c6kiRVadb04pMkDRYDSpJUJQNKklQlA0qSVCUDSpJUJQNKklQlA0qSVKX/Bwv3rkJVgddRAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAagAAAEYCAYAAAAJeGK1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAFFRJREFUeJzt3X+QXWV9x/H3l0QwEiTB4BoTNFCoFUz9wYp06LQbUImAwh/qYBknVDSdqh1a09Eg0zpOtQMihbHqYKqW0NEGRBEGxx9IWX/MCEhUjIhIhAgBTEQSZJVao9/+cZ/ITbi7e/fuvdln732/Zu7sOc/5cZ/77D372XPOc58bmYkkSbXZb6YrIElSKwaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlNQDEXFHRIyMs2wkIrZ26XlGI+LN3diXVJu5M10BaaZFxBZgCPgdMAZ8CXh7Zo51us/MPKY7tZMGl2dQUsOrM3M+8CLgxcB5M1wfaeAZUFKTzPwZ8GUaQUVEHBARH4yI+yJiW0RcFhHzyrJFEXF9ROyMiEci4hsRsV9ZtiUiXl6m50XE5RGxIyJ+CLy0+TkjIiPiyKb5yyPifWV6YXmOn5ftr4+Ipa3qHhFHRsTXIuLRiHg4Iq7sQRNJ+4wBJTUpf/xfBWwuRRcCf0wjsI4ElgD/XJatAbYCh9K4RPhuoNXYYe8B/qg8TgZWTaFK+wH/CTwXeA7wOPDhcdb9F+ArwEJgKfDvU3geqToGlNTw+Yh4DLgf2A68JyICeAvwD5n5SGY+BvwrcGbZ5rfAYuC5mfnbzPxGth7c8vXA+8s+7gc+1G6lMvMXmfnZzPx1ef73A385zuq/pRFkz87M/83Mb7b7PFKNDCip4YzMPAgYAf4EWETjzOhpwMZyGW8njQ4Uh5ZtLqJxpvWViLgnItaOs+9n0wi+3X7abqUi4mkR8bGI+GlE/BL4OrAgIua0WP2dQAC3ll6Eb2r3eaQaGVBSk8z8GnA58EHgYRqX1I7JzAXlcXDpTEFmPpaZazLzCODVwDsi4qQWu30IOKxp/jl7Lf81jSDc7VlN02uA5wEvy8ynA39RyqNF3X+WmW/JzGcDfwN8tPneljTbGFDSk10KvAL4U+A/gEsi4pkAEbEkIk4u06eVjgkB/JJGN/XftdjfVcB5pcPDUuDv9lr+PeCvImJORKxkz0t4B9EIyZ0RcQiN+1ktRcTrmjpQ7KBxP6xVfaRZwYCS9pKZPweuAP4JeBeNy3g3l0tsX6VxRgNwVJkfA74FfDQzR1vs8r00LuvdS6MTw3/ttfxcGmdgO4GzgM83LbsUmEfjbO5mGpcYx/NS4JaIGAOuA87NzHsnf8VSncIvLJQk1cgzKElSlQwoSVKVDChJUpXaGiy2DKb5GI0eQbsyc7j0KLoSWAZsAV6fmTt6U01J0qBpq5NECajhzHy4qewDwCOZeUH5gOLCzHzXRPtZtGhRLlu2bHo1nsCvfvUrDjzwwJ7tvx/ZZp2x3Tpju01dP7bZxo0bH87MQydbbzpft3E6jU/dA6wHRml0yR3XsmXLuO2226bxlBMbHR1lZGRk0vX0BNusM7ZbZ2y3qevHNouItkZTafcM6l6e+ODfxzJzXUTszMwFTevsyMyFLbZdDawGGBoaOnbDhg1tvoSpGxsbY/78+T3bfz+yzTpju3XGdpu6fmyzFStWbMzM4cnWa/cM6oTMfLB8mv6GiPhRuxXJzHXAOoDh4eHs5X8C/fifRq/ZZp2x3Tpju03dILdZW734MvPB8nM7cA1wHLAtIhYDlJ/be1VJSdLgmTSgIuLAiDho9zTwSuAHNIZS2f29NquAa3tVSUnS4GnnEt8QcE1jPEzmAp/OzC9FxLeBqyLiHOA+4HW9q6YkadBMGlCZeQ/wwhblvwBafbWAJEnT5kgSkqQqGVCSpCoZUJKkKhlQkqQqTWeoI2lWWLb2Cx1tt+WCU7tcE0lT4RmUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUp+UFcax0Qf8F2zfBdnd/gB4In44WDpCZ5BSZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKqZEBJkqpkQEmSqmRASZKq5GjmUkUmGkF9Io6Crn7kGZQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKbQdURMyJiO9GxPVl/vCIuCUi7o6IKyNi/95VU5I0aKZyBnUucGfT/IXAJZl5FLADOKebFZMkDba2AioilgKnAh8v8wGcCFxdVlkPnNGLCkqSBlO7Z1CXAu8Efl/mnwHszMxdZX4rsKTLdZMkDbBJRzOPiNOA7Zm5MSJGdhe3WDXH2X41sBpgaGiI0dHRzmrahrGxsZ7uvx8NQputWb5r8pWmaGheb/bbqdnyOxyE91u3DXKbtfN1GycAr4mIU4CnAk+ncUa1ICLmlrOopcCDrTbOzHXAOoDh4eEcGRnpRr1bGh0dpZf770eD0GZnd/gVFhNZs3wXF2+q59tqtpw1MtNVaMsgvN+6bZDbbNJLfJl5XmYuzcxlwJnA/2TmWcBNwGvLaquAa3tWS0nSwJnO56DeBbwjIjbTuCf1ie5USZKkKX6jbmaOAqNl+h7guO5XSWqt02+blTQ7OZKEJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSnNnugKSZs6ytV/oaLstF5za5ZpIT+YZlCSpSpMGVEQ8NSJujYjbI+KOiHhvKT88Im6JiLsj4sqI2L/31ZUkDYp2zqB+A5yYmS8EXgSsjIjjgQuBSzLzKGAHcE7vqilJGjSTBlQ2jJXZp5RHAicCV5fy9cAZPamhJGkgRWZOvlLEHGAjcCTwEeAi4ObMPLIsPwz4Yma+oMW2q4HVAENDQ8du2LChe7Xfy9jYGPPnz+/Z/vvRbGqzTQ88OtNV+IOhebDt8ZmuxROWLzm4o+06bdNOn282vd9q0Y9ttmLFio2ZOTzZem314svM3wEviogFwDXA81utNs6264B1AMPDwzkyMtLOU3ZkdHSUXu6/H82mNju7wx5nvbBm+S4u3lRPJ9gtZ410tF2nbdrp882m91stBrnNptSLLzN3AqPA8cCCiNh9hC4FHuxu1SRJg6ydXnyHljMnImIe8HLgTuAm4LVltVXAtb2qpCRp8LRzjWIxsL7ch9oPuCozr4+IHwIbIuJ9wHeBT/SwnpKkATNpQGXm94EXtyi/BziuF5WSJMmRJCRJVTKgJElVMqAkSVWq54MckjrW6ajkUs08g5IkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyQ/qap/zQ6WS2uEZlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUoGlCSpSgaUJKlKBpQkqUqTBlREHBYRN0XEnRFxR0ScW8oPiYgbIuLu8nNh76srSRoU7ZxB7QLWZObzgeOBt0XE0cBa4MbMPAq4scxLktQVkwZUZj6Umd8p048BdwJLgNOB9WW19cAZvaqkJGnwRGa2v3LEMuDrwAuA+zJzQdOyHZn5pMt8EbEaWA0wNDR07IYNG6ZZ5fGNjY0xf/78nu2/H81Em2164NF9+ny9MDQPtj0+07WYOcuXHNzRdh6jU9ePbbZixYqNmTk82XptB1REzAe+Brw/Mz8XETvbCahmw8PDedttt7X1fJ0YHR1lZGSkZ/vvRzPRZsvWfmGfPl8vrFm+i4s3zZ3pasyYLRec2tF2HqNT149tFhFtBVRbvfgi4inAZ4FPZebnSvG2iFhcli8GtndaWUmS9tZOL74APgHcmZn/1rToOmBVmV4FXNv96kmSBlU71yhOAN4IbIqI75WydwMXAFdFxDnAfcDrelNFSdIgmjSgMvObQIyz+KTuVkeSpAZHkpAkVcmAkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFXJgJIkVcmAkiRVaXBHu9S09cOgr5Lq5RmUJKlKBpQkqUoGlCSpSgaUJKlKdpKQNGWddpC5fOWBXa6J+plnUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQqGVCSpCoZUJKkKhlQkqQq+Y266vjbUSWplzyDkiRVyYCSJFXJgJIkVcmAkiRVyYCSJFVp0oCKiE9GxPaI+EFT2SERcUNE3F1+LuxtNSVJg6adM6jLgZV7la0FbszMo4Aby7wkSV0zaUBl5teBR/YqPh1YX6bXA2d0uV6SpAEXmTn5ShHLgOsz8wVlfmdmLmhaviMzW17mi4jVwGqAoaGhYzds2NCFarc2NjbG/Pnze7b/2m164NEpbzM0D7Y93oPK9DnbrTOHHzxnoI/RTvTj37UVK1ZszMzhydbr+UgSmbkOWAcwPDycIyMjPXuu0dFRern/2p3dwYgQa5bv4uJNDigyVbZbZy5feeBAH6OdGOS/a5324tsWEYsBys/t3auSJEmdB9R1wKoyvQq4tjvVkSSpoZ1u5v8NfAt4XkRsjYhzgAuAV0TE3cAryrwkSV0z6UX0zHzDOItO6nJdJPW5TQ882tG90i0XnNqD2qh2jiQhSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSASVJqpIBJUmqkgElSaqSXwlaoWUdjPYsSf3GMyhJUpUMKElSlQwoSVKVDChJUpXsJCGpb3Xa4civmK+DZ1CSpCoZUJKkKhlQkqQqeQ+qh/zArdQdHkuDyTMoSVKVDChJUpUMKElSlQwoSVKVDChJUpUMKElSlQwoSVKVDChJUpUMKElSlWbdSBITfaJ8zfJdnD3BckcoltSOfh8Ffba8Ps+gJElVMqAkSVUyoCRJVZp196CmwxGRJfVSL/7GTHRvfbbc8+qUZ1CSpCpNK6AiYmVE3BURmyNibbcqJUlSxwEVEXOAjwCvAo4G3hARR3erYpKkwTadM6jjgM2ZeU9m/h+wATi9O9WSJA26yMzONox4LbAyM99c5t8IvCwz377XequB1WX2ecBdnVd3UouAh3u4/35km3XGduuM7TZ1/dhmz83MQydbaTq9+KJF2ZPSLjPXAeum8Txti4jbMnN4XzxXv7DNOmO7dcZ2m7pBbrPpXOLbChzWNL8UeHB61ZEkqWE6AfVt4KiIODwi9gfOBK7rTrUkSYOu40t8mbkrIt4OfBmYA3wyM+/oWs06s08uJfYZ26wztltnbLepG9g267iThCRJveRIEpKkKhlQkqQqzbqAioh/jIiMiEVlPiLiQ2W4pe9HxEua1l0VEXeXx6qm8mMjYlPZ5kMR0arLfF+IiIsi4kelba6JiAVNy84rbXBXRJzcVN5yCKvSIeaW0p5Xls4xA8XhvfYUEYdFxE0RcWdE3BER55byQyLihvJeuSEiFpbyKR+v/Soi5kTEdyPi+jLf8viKiAPK/OayfFnTPloew30jM2fNg0a39i8DPwUWlbJTgC/S+FzW8cAtpfwQ4J7yc2GZXliW3Qr8Wdnmi8CrZvq19bDNXgnMLdMXAheW6aOB24EDgMOBn9Do7DKnTB8B7F/WObpscxVwZpm+DPjbmX59+7gtx22bQX0Ai4GXlOmDgB+X99YHgLWlfG3T+27Kx2u/PoB3AJ8Gri/zLY8v4K3AZWX6TODKMt3yGJ7p19XNx2w7g7oEeCd7fiD4dOCKbLgZWBARi4GTgRsy85HM3AHcAKwsy56emd/Kxm/5CuCMffsy9p3M/Epm7iqzN9P4vBo02m1DZv4mM+8FNtMYvqrlEFblLPNE4Oqy/Xr6uN3G4fBee8nMhzLzO2X6MeBOYAmNdllfVmt+r0zpeN2HL2WfioilwKnAx8v8RMdXc1teDZxU1h/vGO4bsyagIuI1wAOZeftei5YA9zfNby1lE5VvbVE+CN5E479XmHq7PQPY2RR2g9Ruu43XNgLKpacXA7cAQ5n5EDRCDHhmWW2q77t+dSmNf7Z/X+YnOr7+0DZl+aNl/b5vs6q+sDAivgo8q8Wi84F307hc9aTNWpRlB+Wz1kTtlpnXlnXOB3YBn9q9WYv1k9b/tPRlu3XANhhHRMwHPgv8fWb+coLbugNzXI4nIk4DtmfmxogY2V3cYtWcZFnft1lVAZWZL29VHhHLaVxjvb288ZcC34mI4xh/yKWtwMhe5aOlfGmL9Wet8dptt3LD+TTgpHJZEyYeqqpV+cM0LsfMLf/Fzfp264DDe7UQEU+hEU6fyszPleJtEbE4Mx8ql/C2l/KpHq/96ATgNRFxCvBU4Ok0zqjGO752t9nWiJgLHAw8wiC8H2f6JlgnD2ALT3SSOJU9b7reWsoPAe6lccN1YZk+pCz7dll3dyeJU2b6NfWwrVYCPwQO3av8GPa8wXoPjU4Ac8v04TzREeCYss1n2PMm7ltn+vXt47Yct20G9VGOoSuAS/cqv4g9O0l8oExP+Xjt5weNUN7dSaLl8QW8jT07SVxVplsewzP9mrraPjNdgQ5/qc0BFTS+OPEnwCZguGm9N9G4cbgZ+Oum8mHgB2WbD1NG1OjHR3nt9wPfK4/LmpadX9rgLpp6MtLoafXjsuz8pvIjaPSA3FwOpgNm+vXNQHu2bJtBfQB/TuOy0veb3mOn0LhHciNwd/m5+5/DKR+v/fzYK6BaHl80zrI+U8pvBY5o2r7lMdwvD4c6kiRVadb04pMkDRYDSpJUJQNKklQlA0qSVCUDSpJUJQNKklQlA0qSVKX/Bwv3rkJVgddRAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -784,7 +768,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.9.7" + "version": "3.10.9" } }, "nbformat": 4, diff --git a/Schrick-Noah_Learning-Practice-5.ipynb b/Schrick-Noah_Learning-Practice-5.ipynb index 4e0ff37..968f7bb 100644 --- a/Schrick-Noah_Learning-Practice-5.ipynb +++ b/Schrick-Noah_Learning-Practice-5.ipynb @@ -362,8 +362,7 @@ "best_step_model, best_step_variables = forward_selection(train_X.columns, train_model, score_model, verbose=True)\n", "print(best_step_variables)\n", "step_train_X = train_X.loc[:,['RM','CRIM','CHAS']]\n", - "regressionSummary(train_y, best_step_model.predict(step_train_X))\n", - "test=regressionSummary(train_y, best_step_model.predict(step_train_X))\n" + "regressionSummary(train_y, best_step_model.predict(step_train_X))\n" ] }, { diff --git a/Schrick-Noah_Learning-Practice-5.odt b/Schrick-Noah_Learning-Practice-5.odt new file mode 100644 index 0000000..a6b64bc Binary files /dev/null and b/Schrick-Noah_Learning-Practice-5.odt differ diff --git a/img/6.1/1b.png b/img/6.1/1b.png new file mode 100644 index 0000000..359ddf3 Binary files /dev/null and b/img/6.1/1b.png differ diff --git a/img/6.1/1c.png b/img/6.1/1c.png new file mode 100644 index 0000000..0a763b4 Binary files /dev/null and b/img/6.1/1c.png differ diff --git a/img/6.1/d3_back.png b/img/6.1/d3_back.png new file mode 100644 index 0000000..29fb97b Binary files /dev/null and b/img/6.1/d3_back.png differ diff --git a/img/6.1/d3_forw.png b/img/6.1/d3_forw.png new file mode 100644 index 0000000..5154c75 Binary files /dev/null and b/img/6.1/d3_forw.png differ diff --git a/img/6.1/d3_lasso.png b/img/6.1/d3_lasso.png new file mode 100644 index 0000000..1fddf3b Binary files /dev/null and b/img/6.1/d3_lasso.png differ diff --git a/img/6.1/d3_ridge.png b/img/6.1/d3_ridge.png new file mode 100644 index 0000000..0b91038 Binary files /dev/null and b/img/6.1/d3_ridge.png differ diff --git a/img/6.1/d3_step.png b/img/6.1/d3_step.png new file mode 100644 index 0000000..256c6b2 Binary files /dev/null and b/img/6.1/d3_step.png differ