QM-7063 Data Mining Professor: Dr. Abdulrashid Learning Practice 4 – Noah L. Schrick

Imports and Initial Work

Learning Practice 4 for the University of Tulsa's QM-7063 Data Mining Course

Cluster Analysis

Professor: Dr. Abdulrashid, Spring 2023

Noah L. Schrick - 1492657

%matplotlib inline

from pathlib import Path

import pandas as pd from sklearn import preprocessing from sklearn.metrics import pairwise from scipy.cluster.hierarchy import dendrogram, linkage, fcluster from sklearn.cluster import KMeans import matplotlib.pylab as plt import seaborn as sns from pandas.plotting import parallel_coordinates

pd.options.mode.chained_assignment = None # default='warn'

15.1 University Rankings.

The dataset on American College and University Rankings (available from www.dataminingbook.com) contains information on 1302 American

colleges and universities offering an undergraduate program. For each university, there are 17 measurements, including continuous measurements (such as tuition and graduation rate) and categorical measurements (such as location by state and whether it is a private or public school).

Note that many records are missing some measurements. Our first goal is to estimate these missing values from "similar" records. This will be done by clustering the complete records and then finding the closest cluster for each of the partial records. The missing values will be imputed from the information in that cluster.

a. Remove all records with missing measurements from the dataset.

raw_university_df = pd.read_csv('Universities.csv')
university_df = raw_university_df.dropna() # 1302 rows -> 471 rows

V V	index	College Name ↑ State Public (1)/ Private (2)		Public (1)/ Private (2)	# appli	# appl	# new	% new	% new	# FT u	# PT u	in-stat	out-of-
≡ x	∇	7	∇	Y	∇								
27	121	Adams State College	со		-0.40246	-0.32110	-0.23121	-0.65006	-0.57329	-0.35143	-0.36580	-1.45385	-2.064
164	524	Adrian College	MI		-0.42210	-0.38580	-0.48568	-0.32537	-0.27808	-0.54118	-0.45184	0.334137	0.156!
0		Alaska Pacific University	AK		-0.72531	-0.76563	-0.79257	-0.65006	-0.57329	-0.70974	0.046284	-0.33472	-0.699
83		Albertson College			-0.62858	-0.63263	-0.68008	0.540459	0.312344	-0.61786	-0.48936	0.741982	0.678
165		Albion College	MI		-0.30647	-0.13697	-0.31858	0.486344	0.607557	-0.42168	-0.49518	0.808687	0.763
339	957	Albright College	PA		-0.51785	-0.48884	-0.60472	0.107540	0.361546	-0.55468	-0.31792	1.121732	1.164
468	1284	Alderson-Broaddus College	WV		-0.62981	-0.62504	-0.66479	-0.37949	-0.57329	-0.59194	-0.46542	0.192388	-0.024
266	768	Alfred University	NY		-0.34747	-0.25479	-0.33714	0.486344	0.951971	-0.37114	-0.44472	1.294477	1.385
340	958	Allegheny College	PA		-0.12160	-0.06508	-0.32404	0.865149	1.050376	-0.39748	-0.48742	1.390910	1.508
378	1035	Allentown Coll. of St. Francis de Sales	PA		-0.48324	-0.51241	-0.53591	0.540459	0.410748	-0.52105	-0.10315	0.051364	-0.205
166	526	Alma College	MI		-0.46163	-0.39259	-0.43216	0.865149	0.853567	-0.48336	-0.49777	0.573768	0.463
133	432	Amherst College	MA		0.283490	-0.42774	-0.39612	2.975630	1.985216	-0.42189	-0.51265	1.876699	2.130
100	325	Anderson University			-0.47415	-0.46128	-0.39066	-0.48772	-0.77010	-0.37349	-0.33410	0.125682	-0.110
167		Andrews University	MI		-0.49527	-0.54276	-0.50097	-0.75829	-1.60653	-0.42339	-0.30499	0.106831	-0.134
413	1120	Angelo State University			0.096411	-0.02474	0.256975	-0.21714	-0.08127	0.134296	0.462250	-1.55282	-1.262
327	916	Antioch University	ОН		-0.59764	-0.55994	-0.57741	-0.16303	-0.57329	-0.61058	-0.50100	1.100161	1.136
210	645	Appalachian State University	NC		1.022724	1.038858	1.233348	-0.43360	0.361546	1.365764	0.153672	-1.57095	-0.874
6		Arkansas College (Lyon College)	AR		-0.59887	-0.69054	-0.67134	0.973378	0.902769	-0.64955	-0.39814	-0.13823	-0.447

(After normalization)

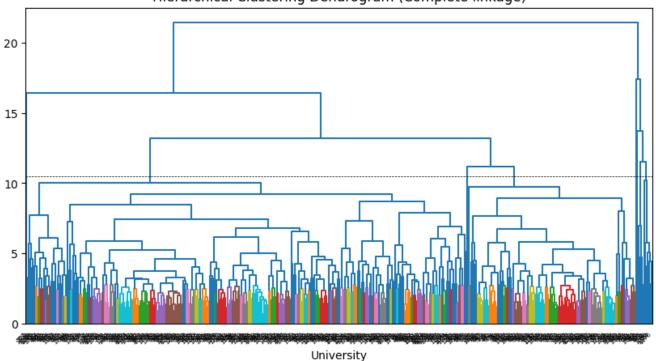
b.

hierarchical clustering using complete linkage and Euclidean distance

```
# Normalize
university_df_num = university_df.select_dtypes(include='number') # get numeric cols only
university_df_num = university_df_num.drop('Public (1)/ Private (2)', axis=1) # drop the discrete
column
university_df_num_norm = (university_df_num -
university df num.mean(numeric only=True))/university df num.std(numeric only=True)#
normalize
university_df.update(university_df_num_norm) # merge
university_dist = pairwise.pairwise_distances(university_df_num_norm,
                      metric='euclidean')
pd.DataFrame(university_dist, columns=university_df.index, index=university_df.index).head(5)
uni hclust = fcluster(linkage(university df num norm, 'complete'), 6, criterion='maxclust')
Z = linkage(university df num norm, method='complete')
fig = plt.figure(figsize=(10, 6))
fig.subplots_adjust(bottom=0.23)
plt.title('Hierarchical Clustering Dendrogram (Complete linkage)')
plt.xlabel('University')
dendrogram(Z, labels=university_df_num_norm.index, color_threshold=2.75)
plt.axhline(y=10.5, color='black', linewidth=0.5, linestyle='dashed')
plt.xticks(rotation=45, ha='right')
plt.show()
```

reasonable number of clusters for describing the data: # At distance of 10.5 (horizontal line in the dendrogram image) data can be reduced to 9 clusters

Hierarchical Clustering Dendrogram (Complete linkage)



c. Compare the summary statistics for each cluster

cutree = cluster.hierarchy.cut_tree(Z, n_clusters=[5, 10])
clust_stats = university_df_num_norm.agg(['mean', 'median'])
print(clust_stats)

7 U	↑ index	# appli	# appl	# new	% new	% new	# FT u	# PT u	in-stat	out-of	room	board	add. fe	estim	estim	% fac	stud./f
≣≅																	∇
	0 mean	-1.88572	1.131437	3.630028	9.051499	-3.77145	-2.07430	3.771458	7.354343	2.130873	-8.29720	-2.75316	3.771458	1.131437	9.805791	2.413733	1.5085
	1 median	-0.36858	-0.33388	-0.36882	-0.27126	-0.08127	-0.39576	-0.32245	0.081816	-0.11020	-0.18383	-0.07045	-0.27826	-0.29894	-0.16417	0.167526	-0.144

d. Use the categorical measurements to categorize

state_table = tabulate(university_df[['State']], cutree)
pub_priv_table = tabulate(university_df[['Public (1)/ Private (2)']], cutree)
print(state_table)

e. Other external information

There are multiple external factors that can explain these clusters. Notably, that these clusters are # built with only partial information. Since the pre-processing step removed all entries with NaNs, the

total number of entries was reduced from 1302 to 471, which is a very large amount of missing data. # Second, school funding priorities can affect some of the school data. Depending on how funding is allocated

to sports, liberal arts, research, campus maintenance, events, etc, the underlying data may change. # The socioeconomic factors involved with private vs public universities may also change the data.

f.

Compute the Euclidean distance of this record from each of the clusters that you found above (using only the measurements that you have)

```
tufts_df = raw_university_df.loc[raw_university_df['College Name'] == 'Tufts University']
tufts_df = tufts_df.drop(['# PT undergrad'], axis=1)
tufts_df_num = tufts_df.select_dtypes(include='number') # get numeric cols only

tufts_dist = pairwise.pairwise_distances(tufts_df_num, Y=university_df_num_norm,
metric='euclidean')

# Closest cluster:
print(raw_university_df.iloc[np.where(tufts_dist == tufts_dist.min())[1][0]]['College Name'])

# impute missing (from raw data – non-normalized)
tufts_df['# PT undergrad'] = clust_stats['# PT undergrad']['mean']
print(tufts_df['# PT undergrad'])
```

Colorado Christian University 475 3.771458e-17

Problem 15.4

The file EastWestAirlinesCluster.csv contains information on 3999 passengers who belong to an airline's frequent flier program. For each passenger, the data include information on their mileage history and on different ways they accrued or spent miles in the last year. The goal is to try to identify clusters of passengers that have similar characteristics for the purpose of targeting different segments for different types of mileage offers.

a.

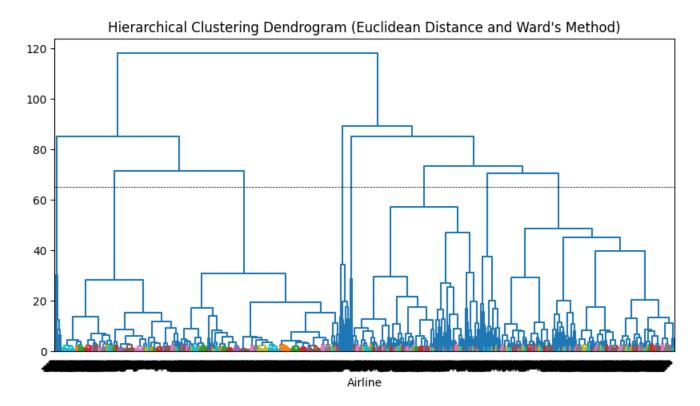
Apply hierarchical clustering with Euclidean distance and Ward's method. Make sure to normalize the data first. How many clusters appear?

```
raw_airlines_df = pd.read_csv('EastWestAirlinesCluster.csv')

# Normalize
airlines_df_norm = raw_airlines_df.apply(preprocessing.scale, axis=0)

# a: hclust with euclidean and ward's
Z = linkage(airlines_df_norm, method='ward', metric='euclidean')
fig = plt.figure(figsize=(10, 6))
fig.subplots_adjust(bottom=0.23)
```

plt.title("Hierarchical Clustering Dendrogram (Euclidean Distance and Ward's Method)") plt.xlabel('Airline') dendrogram(Z, labels=airlines_df_norm.index, color_threshold=2.75) plt.axhline(y=65, color='black', linewidth=0.5, linestyle='dashed') plt.xticks(rotation=45, ha='right') plt.show()



b. What would happen if the data were not normalized?

Data must be normalized to ensure that likeness is preserved through different data. It allows for scale to be enforced, and ensures that unwanted data is filtered out. It is an important step for optimizing the analysis approaches, specifically for distance measurements in this example.

c.

Compare the cluster centroid to characterize the different clusters, and try to give each cluster a label.

kmeans = KMeans(n_clusters=8, random_state=0).fit(airlines_df_norm)
Number of clusters is based on the dendrogram from part a

centroids = pd.DataFrame(kmeans.cluster_centers_, columns=airlines_df_norm.columns)
#pd.set_option('precision', 3)
print(centroids)

Cluster membership

```
memb = pd.Series(kmeans.labels_, index=airlines_df_norm.index)
for key, item in memb.groupby(memb):
    print(key, ': ', ', '.join(str(item.index[0])))
```