14.1 of LP3

This commit is contained in:
Noah L. Schrick 2023-02-12 18:58:31 -06:00
parent ac8fc617c2
commit 1e2af7d33c
3 changed files with 552 additions and 26 deletions

366
Coursetopics.csv Normal file
View File

@ -0,0 +1,366 @@
Intro,DataMining,Survey,Cat Data,Regression,Forecast,DOE,SW
1,1,0,0,0,0,0,0
0,0,1,0,0,0,0,0
0,1,0,1,1,0,0,1
1,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,1,0,1,1,1
1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,1,1,0,0,1,0,0
0,1,1,0,0,0,0,0
1,0,1,1,0,1,1,1
1,0,0,0,1,0,0,0
1,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,1,1,0,0
1,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1
0,0,0,0,1,1,0,1
0,0,0,1,0,0,1,1
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,0,0,1,0,0,0
0,1,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,1,1,1,1,1,1,0
0,0,0,0,0,0,0,1
0,0,1,0,0,0,0,0
1,0,1,0,0,0,0,1
1,0,0,0,0,0,0,0
1,1,0,0,0,0,0,1
1,0,1,0,0,1,0,0
0,0,0,0,1,0,0,0
0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
1,1,0,1,1,0,0,1
1,0,0,0,0,0,0,0
1,0,0,0,1,0,1,1
0,1,0,1,0,1,1,0
0,0,1,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,1,1,0
0,0,0,1,0,0,1,1
1,0,1,0,0,0,0,1
0,0,0,1,0,0,0,0
0,0,1,1,0,0,0,0
0,0,0,1,0,0,1,0
0,0,0,1,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,0,1,0,1
1,0,0,0,0,0,0,0
1,1,0,1,1,0,0,0
0,0,0,1,0,0,0,0
1,0,0,1,1,1,0,0
0,0,0,1,1,0,0,1
1,0,0,1,0,1,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0
0,0,0,1,1,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
1,0,0,0,1,0,0,1
1,0,0,0,0,0,0,0
1,0,0,1,1,1,0,0
0,0,0,0,1,1,0,0
0,0,1,0,0,0,0,0
1,0,0,0,0,0,1,0
1,0,0,0,0,0,0,1
0,0,1,0,0,0,0,0
0,0,0,0,0,1,1,1
0,0,0,0,0,0,0,1
1,0,1,1,0,0,0,0
1,1,0,0,0,1,0,1
0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
0,0,1,1,0,1,1,0
1,0,0,0,1,0,0,1
1,0,0,0,1,0,0,1
0,0,0,0,1,0,0,1
1,0,1,1,1,0,1,1
1,0,1,1,0,1,0,1
0,0,0,0,1,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,1,0,0,1
1,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0
1,1,1,0,1,1,0,0
0,0,1,1,0,0,0,1
1,0,0,1,0,0,1,1
0,0,1,0,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,1,1,0,0,1,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,1,1
0,0,0,1,0,0,0,0
1,1,0,0,0,0,1,0
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
1,0,1,0,0,1,0,0
1,0,0,1,0,0,0,1
1,0,0,0,0,0,0,0
0,0,1,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,0,1,0,1,0,1,1
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
0,0,1,1,0,1,0,0
0,1,0,1,0,0,1,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,1,1,0
0,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,1
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0
0,0,0,0,1,0,0,0
0,0,1,0,0,0,1,1
1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0
1,0,1,1,0,0,0,0
0,0,1,1,1,0,0,0
1,0,0,0,0,0,0,0
1,0,1,0,0,0,0,1
0,1,0,0,0,0,0,0
0,1,1,1,1,0,0,0
1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0
1,1,0,0,1,1,0,0
0,0,0,0,0,0,1,0
1,0,0,0,1,0,1,1
1,0,0,0,0,0,0,0
1,0,0,1,0,0,0,0
0,1,0,0,0,0,0,0
1,1,1,1,0,1,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
1,0,1,0,0,0,0,1
0,1,0,0,0,0,0,0
0,1,1,1,1,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0
1,1,0,0,1,1,0,0
0,0,0,0,0,0,1,0
1,0,0,0,1,0,1,1
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,1,1,1,0,0,1,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,0,0,1,1
1,1,0,1,1,0,1,1
1,0,0,0,0,0,0,0
1,1,1,0,0,0,0,1
0,0,1,0,0,0,1,0
0,0,1,0,1,0,1,0
0,1,0,0,0,1,0,1
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,1,1,1
0,0,0,1,0,1,0,0
0,0,0,0,0,0,1,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,1,0,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,1,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,0,1,0,0
0,0,0,0,0,0,1,0
0,1,0,0,1,1,0,1
0,0,0,0,1,0,0,0
0,0,1,0,0,0,0,0
0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0
0,1,1,1,0,0,1,1
1,1,0,0,1,1,0,1
0,0,1,1,0,0,0,1
0,1,0,0,1,1,0,0
0,0,0,0,0,0,0,1
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,0,0,0,0,1,0
0,0,1,1,1,0,0,0
1,1,0,1,1,0,0,0
0,0,1,1,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0
0,1,0,1,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,1,0,0,0,0
0,1,1,0,0,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,0,1,0,0
0,0,1,0,0,1,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
1,0,0,1,1,0,0,1
1,0,0,0,0,0,0,0
0,0,1,0,0,0,0,1
0,0,1,0,0,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,0,1,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,1,0,0,0,1,0,0
1,0,1,1,0,1,0,1
1,0,0,0,1,0,1,1
0,0,0,0,0,0,0,1
1,1,0,1,1,0,0,0
0,0,0,1,0,0,0,1
0,0,0,0,0,1,1,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,0
1,0,0,1,0,0,1,1
0,0,1,0,0,0,0,0
0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,0,0,0,0,1,0
0,0,1,0,0,0,0,0
0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0
0,0,0,1,0,0,0,0
0,0,0,1,0,0,0,1
1,0,0,0,0,0,0,0
0,0,0,0,0,1,0,0
0,1,0,0,0,0,0,0
0,0,0,1,0,0,0,0
1,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
0,0,1,0,0,0,1,1
0,0,0,0,0,1,0,0
0,0,0,1,0,0,0,0
0,1,0,1,1,0,0,0
0,0,1,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,0,0,0,0,1,0
0,0,0,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,0,1
0,0,1,0,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,1,0,0,0
0,1,0,0,0,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
0,1,0,0,0,0,0,0
0,1,0,1,0,1,0,1
0,0,0,0,0,0,1,0
1,0,1,1,0,0,0,1
0,0,0,0,0,0,0,1
1,0,0,0,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,0,1
0,1,0,0,0,0,0,1
1,0,1,0,0,0,0,0
0,0,0,0,0,0,1,0
1,0,1,0,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,0,0,0,0,1,0
0,1,0,0,0,0,0,0
0,1,0,0,0,0,0,0
0,0,0,0,0,1,0,0
1,0,0,0,0,0,1,1
0,0,0,0,0,0,1,0
0,0,0,0,0,0,0,0
0,0,0,0,1,0,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,0,1,0,0,0,0
0,0,0,0,1,0,0,0
0,0,0,0,1,0,0,0
0,0,0,1,0,0,0,0
1,0,0,1,1,0,1,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
0,0,0,0,0,0,1,0
0,0,0,1,0,0,0,0
0,0,0,1,0,0,0,0
1,0,1,0,0,0,0,1
0,0,1,1,0,1,0,0
1,0,0,0,0,0,0,0
0,0,0,0,0,0,1,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0
0,0,0,1,0,0,0,0
0,0,1,0,0,0,0,0
0,0,0,0,0,0,0,1
1,0,0,1,1,0,0,0
0,0,0,0,0,0,1,0
0,0,0,0,1,0,0,0
0,0,0,1,0,0,0,0
0,1,0,1,0,0,0,1
0,0,0,0,0,0,0,1
0,0,0,1,0,0,0,0
0,0,0,0,1,0,0,0
1 Intro DataMining Survey Cat Data Regression Forecast DOE SW
2 1 1 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0
4 0 1 0 1 1 0 0 1
5 1 0 0 0 0 0 0 0
6 1 1 0 0 0 0 0 0
7 0 1 0 0 0 0 0 0
8 1 0 0 0 0 0 0 0
9 0 0 0 1 0 1 1 1
10 1 0 0 0 0 0 0 0
11 0 0 0 1 0 0 0 0
12 1 0 0 0 0 0 0 0
13 0 1 0 0 0 0 0 0
14 0 1 0 0 0 0 0 0
15 0 1 1 0 0 1 0 0
16 0 1 1 0 0 0 0 0
17 1 0 1 1 0 1 1 1
18 1 0 0 0 1 0 0 0
19 1 0 0 0 0 1 0 0
20 1 0 0 0 0 0 0 0
21 0 0 0 0 1 0 0 0
22 0 0 1 0 0 0 0 0
23 0 0 0 0 1 1 0 0
24 1 0 0 1 0 0 0 0
25 1 0 0 0 0 0 0 0
26 1 0 0 0 0 0 0 1
27 0 0 0 0 1 1 0 1
28 0 0 0 1 0 0 1 1
29 1 0 0 0 0 0 0 0
30 0 0 0 0 0 0 0 1
31 0 0 0 0 1 0 0 0
32 0 1 0 0 0 0 0 0
33 0 1 0 0 0 0 0 0
34 1 1 1 1 1 1 1 0
35 0 0 0 0 0 0 0 1
36 0 0 1 0 0 0 0 0
37 1 0 1 0 0 0 0 1
38 1 0 0 0 0 0 0 0
39 1 1 0 0 0 0 0 1
40 1 0 1 0 0 1 0 0
41 0 0 0 0 1 0 0 0
42 0 0 0 0 0 0 1 0
43 1 0 0 0 0 0 0 0
44 0 0 0 0 0 0 0 1
45 1 0 0 0 0 0 0 0
46 0 0 0 0 0 0 0 1
47 1 0 0 0 0 0 0 0
48 1 1 0 1 1 0 0 1
49 1 0 0 0 0 0 0 0
50 1 0 0 0 1 0 1 1
51 0 1 0 1 0 1 1 0
52 0 0 1 0 0 0 0 0
53 0 0 0 0 1 0 0 0
54 0 0 0 0 1 1 1 0
55 0 0 0 1 0 0 1 1
56 1 0 1 0 0 0 0 1
57 0 0 0 1 0 0 0 0
58 0 0 1 1 0 0 0 0
59 0 0 0 1 0 0 1 0
60 0 0 0 1 0 0 0 0
61 0 0 1 0 0 0 0 0
62 0 0 0 0 1 0 0 0
63 0 0 0 0 1 0 0 0
64 1 0 0 0 0 1 0 1
65 1 0 0 0 0 0 0 0
66 1 1 0 1 1 0 0 0
67 0 0 0 1 0 0 0 0
68 1 0 0 1 1 1 0 0
69 0 0 0 1 1 0 0 1
70 1 0 0 1 0 1 0 0
71 1 0 0 0 0 0 0 0
72 0 1 0 0 0 0 0 0
73 0 0 0 0 0 0 0 1
74 0 0 0 0 0 0 1 0
75 1 0 0 0 0 0 0 0
76 0 0 0 1 1 1 0 0
77 1 0 0 0 0 0 0 0
78 0 0 0 0 0 0 1 0
79 1 0 0 0 1 0 0 1
80 1 0 0 0 0 0 0 0
81 1 0 0 1 1 1 0 0
82 0 0 0 0 1 1 0 0
83 0 0 1 0 0 0 0 0
84 1 0 0 0 0 0 1 0
85 1 0 0 0 0 0 0 1
86 0 0 1 0 0 0 0 0
87 0 0 0 0 0 1 1 1
88 0 0 0 0 0 0 0 1
89 1 0 1 1 0 0 0 0
90 1 1 0 0 0 1 0 1
91 0 0 0 0 0 0 0 0
92 1 0 0 0 0 0 0 1
93 1 0 0 0 0 0 0 0
94 0 0 1 1 0 1 1 0
95 1 0 0 0 1 0 0 1
96 1 0 0 0 1 0 0 1
97 0 0 0 0 1 0 0 1
98 1 0 1 1 1 0 1 1
99 1 0 1 1 0 1 0 1
100 0 0 0 0 1 0 0 0
101 0 1 0 0 0 0 0 0
102 1 0 0 0 0 0 0 0
103 0 0 0 0 1 0 0 0
104 0 0 0 0 1 0 0 0
105 0 0 0 0 1 0 0 0
106 1 0 0 0 1 0 0 1
107 1 0 0 0 0 0 0 0
108 1 1 0 0 0 0 0 0
109 1 1 1 0 1 1 0 0
110 0 0 1 1 0 0 0 1
111 1 0 0 1 0 0 1 1
112 0 0 1 0 0 0 0 0
113 0 0 1 0 0 0 0 0
114 0 0 0 0 0 0 1 0
115 0 0 1 1 0 0 1 0
116 1 0 0 0 0 0 0 0
117 0 0 0 0 0 0 0 1
118 0 0 0 0 0 1 0 0
119 1 0 0 0 0 0 0 0
120 0 0 0 0 1 0 0 0
121 1 0 0 0 0 0 0 0
122 0 1 0 0 0 0 1 1
123 0 0 0 1 0 0 0 0
124 1 1 0 0 0 0 1 0
125 0 0 0 0 0 0 0 1
126 1 0 0 0 0 0 0 0
127 1 0 0 0 0 0 0 0
128 1 0 1 0 0 1 0 0
129 1 0 0 1 0 0 0 1
130 1 0 0 0 0 0 0 0
131 0 0 1 0 0 1 0 0
132 1 0 0 0 0 0 0 0
133 0 0 1 0 0 0 0 0
134 1 0 0 0 0 0 0 0
135 0 1 0 0 0 0 0 0
136 1 0 1 0 1 0 1 1
137 1 0 0 0 0 0 0 0
138 0 0 0 0 0 0 0 1
139 1 0 0 0 0 0 0 0
140 0 0 1 1 0 1 0 0
141 0 1 0 1 0 0 1 0
142 0 0 0 0 1 0 0 0
143 1 0 0 0 0 0 0 0
144 1 0 0 0 0 1 1 0
145 0 0 0 0 0 0 0 0
146 0 0 0 0 1 0 0 0
147 0 0 0 0 1 0 0 1
148 1 0 0 0 0 0 0 0
149 0 0 0 0 1 0 0 0
150 1 0 0 0 0 0 0 0
151 1 0 0 0 0 0 0 0
152 0 0 0 0 0 1 0 0
153 1 0 0 0 0 0 0 0
154 0 0 0 0 0 1 0 0
155 0 0 0 0 1 0 0 0
156 0 0 1 0 0 0 1 1
157 1 0 0 0 0 0 0 0
158 0 0 0 1 0 0 0 0
159 1 0 1 1 0 0 0 0
160 0 0 1 1 1 0 0 0
161 1 0 0 0 0 0 0 0
162 1 0 1 0 0 0 0 1
163 0 1 0 0 0 0 0 0
164 0 1 1 1 1 0 0 0
165 1 0 0 0 0 0 0 0
166 0 0 0 1 0 0 0 0
167 1 1 0 0 1 1 0 0
168 0 0 0 0 0 0 1 0
169 1 0 0 0 1 0 1 1
170 1 0 0 0 0 0 0 0
171 1 0 0 1 0 0 0 0
172 0 1 0 0 0 0 0 0
173 1 1 1 1 0 1 0 0
174 1 0 0 0 0 0 0 0
175 0 1 0 0 0 0 0 0
176 1 0 0 0 0 0 0 0
177 1 0 1 0 0 0 0 1
178 0 1 0 0 0 0 0 0
179 0 1 1 1 1 0 0 0
180 1 0 0 0 0 0 0 0
181 1 0 0 0 0 0 0 0
182 0 0 0 1 0 0 0 0
183 1 1 0 0 1 1 0 0
184 0 0 0 0 0 0 1 0
185 1 0 0 0 1 0 1 1
186 1 0 0 0 0 0 0 0
187 0 1 0 0 0 0 0 0
188 1 1 1 1 0 0 1 0
189 1 0 0 0 0 0 0 0
190 0 1 0 0 0 0 0 0
191 0 0 0 0 1 0 0 0
192 0 0 0 0 0 0 1 1
193 1 1 0 1 1 0 1 1
194 1 0 0 0 0 0 0 0
195 1 1 1 0 0 0 0 1
196 0 0 1 0 0 0 1 0
197 0 0 1 0 1 0 1 0
198 0 1 0 0 0 1 0 1
199 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0
201 0 0 0 0 0 1 1 1
202 0 0 0 1 0 1 0 0
203 0 0 0 0 0 0 1 0
204 0 0 0 0 1 0 0 0
205 1 0 0 0 0 0 0 0
206 0 0 0 0 0 0 0 1
207 0 0 1 0 0 0 0 0
208 1 0 0 0 0 0 0 0
209 0 1 0 0 0 0 0 0
210 0 0 0 0 1 0 0 0
211 0 0 0 0 0 0 1 0
212 1 0 0 0 0 0 0 0
213 0 0 0 0 0 0 0 1
214 0 1 0 0 0 0 0 0
215 0 0 0 0 1 0 0 0
216 0 0 0 0 0 1 0 0
217 0 0 0 0 0 0 1 0
218 0 1 0 0 1 1 0 1
219 0 0 0 0 1 0 0 0
220 0 0 1 0 0 0 0 0
221 0 0 0 1 0 0 0 0
222 1 0 0 0 0 0 0 0
223 0 1 1 1 0 0 1 1
224 1 1 0 0 1 1 0 1
225 0 0 1 1 0 0 0 1
226 0 1 0 0 1 1 0 0
227 0 0 0 0 0 0 0 1
228 0 0 0 0 0 0 0 1
229 1 0 0 0 0 0 0 0
230 1 0 0 0 0 0 0 0
231 0 0 0 0 1 0 0 0
232 0 1 0 0 0 0 0 0
233 1 0 0 0 0 0 0 0
234 1 0 0 0 0 0 0 0
235 0 0 0 0 0 0 1 0
236 0 0 0 0 0 0 1 0
237 0 0 1 1 1 0 0 0
238 1 1 0 1 1 0 0 0
239 0 0 1 1 0 0 0 0
240 1 0 0 0 0 0 0 0
241 0 0 0 0 0 0 0 0
242 0 0 0 0 0 0 0 0
243 1 1 0 0 0 0 0 0
244 0 1 0 1 0 0 0 0
245 1 0 0 0 0 0 0 0
246 0 0 0 0 1 0 0 0
247 0 0 0 1 0 0 0 0
248 0 1 1 0 0 0 0 0
249 0 0 0 0 1 0 0 0
250 1 0 0 0 0 1 0 0
251 0 0 1 0 0 1 0 0
252 0 1 0 0 0 0 0 0
253 1 0 0 0 0 0 0 0
254 1 0 0 1 1 0 0 1
255 1 0 0 0 0 0 0 0
256 0 0 1 0 0 0 0 1
257 0 0 1 0 0 0 0 0
258 0 1 0 0 0 0 0 0
259 1 0 0 0 0 0 0 0
260 0 1 0 0 0 0 0 0
261 1 0 0 0 0 0 0 0
262 0 1 0 0 0 0 1 0
263 0 0 0 0 1 0 0 0
264 1 0 0 0 0 0 0 0
265 1 0 0 0 0 0 0 0
266 0 1 0 0 0 1 0 0
267 1 0 1 1 0 1 0 1
268 1 0 0 0 1 0 1 1
269 0 0 0 0 0 0 0 1
270 1 1 0 1 1 0 0 0
271 0 0 0 1 0 0 0 1
272 0 0 0 0 0 1 1 0
273 0 0 0 0 1 0 0 0
274 0 0 0 0 1 0 0 0
275 1 0 0 1 0 0 1 1
276 0 0 1 0 0 0 0 0
277 0 0 0 0 0 0 1 0
278 1 0 0 0 0 0 0 0
279 0 0 0 0 0 0 0 1
280 0 0 0 0 0 0 1 0
281 0 0 1 0 0 0 0 0
282 0 0 0 1 0 0 0 0
283 1 0 0 0 0 0 0 0
284 0 0 0 0 0 1 0 0
285 0 0 0 1 0 0 0 0
286 0 0 0 1 0 0 0 1
287 1 0 0 0 0 0 0 0
288 0 0 0 0 0 1 0 0
289 0 1 0 0 0 0 0 0
290 0 0 0 1 0 0 0 0
291 1 0 0 0 0 0 0 1
292 1 0 0 0 0 0 0 0
293 1 0 0 0 0 0 0 0
294 0 0 0 0 1 0 0 0
295 0 0 1 0 0 0 1 1
296 0 0 0 0 0 1 0 0
297 0 0 0 1 0 0 0 0
298 0 1 0 1 1 0 0 0
299 0 0 1 0 0 0 0 0
300 1 0 0 0 0 0 0 0
301 0 0 0 0 0 0 0 1
302 0 0 0 0 0 0 1 0
303 0 0 0 0 0 1 0 0
304 1 0 0 0 0 0 0 0
305 0 0 1 0 0 0 0 0
306 0 0 0 0 0 0 0 1
307 0 0 1 0 0 0 0 0
308 0 0 1 0 0 0 0 0
309 0 0 0 0 1 0 0 0
310 0 1 0 0 0 1 0 0
311 1 0 0 0 0 0 0 0
312 0 0 0 0 0 0 1 0
313 0 1 0 0 0 0 0 0
314 0 1 0 1 0 1 0 1
315 0 0 0 0 0 0 1 0
316 1 0 1 1 0 0 0 1
317 0 0 0 0 0 0 0 1
318 1 0 0 0 0 0 0 0
319 0 0 1 0 0 0 0 0
320 0 0 0 0 0 0 0 1
321 0 1 0 0 0 0 0 1
322 1 0 1 0 0 0 0 0
323 0 0 0 0 0 0 1 0
324 1 0 1 0 0 0 0 0
325 0 0 1 0 0 0 0 0
326 0 0 0 0 0 0 1 0
327 0 0 0 0 0 0 1 0
328 0 1 0 0 0 0 0 0
329 0 1 0 0 0 0 0 0
330 0 0 0 0 0 1 0 0
331 1 0 0 0 0 0 1 1
332 0 0 0 0 0 0 1 0
333 0 0 0 0 0 0 0 0
334 0 0 0 0 1 0 0 0
335 1 0 0 0 0 0 0 0
336 0 0 0 0 0 0 1 0
337 0 0 1 0 0 0 0 0
338 0 0 0 0 0 0 1 0
339 0 0 0 1 0 0 0 0
340 0 0 0 0 1 0 0 0
341 0 0 0 0 1 0 0 0
342 0 0 0 1 0 0 0 0
343 1 0 0 1 1 0 1 0
344 1 0 0 0 0 0 0 0
345 0 0 0 0 0 0 1 0
346 0 0 0 0 0 0 1 0
347 0 0 0 1 0 0 0 0
348 0 0 0 1 0 0 0 0
349 1 0 1 0 0 0 0 1
350 0 0 1 1 0 1 0 0
351 1 0 0 0 0 0 0 0
352 0 0 0 0 0 0 1 0
353 1 0 0 0 0 0 0 0
354 1 0 0 0 0 0 0 0
355 1 0 0 0 0 0 0 0
356 0 0 0 1 0 0 0 0
357 0 0 1 0 0 0 0 0
358 0 0 0 0 0 0 0 1
359 1 0 0 1 1 0 0 0
360 0 0 0 0 0 0 1 0
361 0 0 0 0 1 0 0 0
362 0 0 0 1 0 0 0 0
363 0 1 0 1 0 0 0 1
364 0 0 0 0 0 0 0 1
365 0 0 0 1 0 0 0 0
366 0 0 0 0 1 0 0 0

View File

@ -19,7 +19,11 @@
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [],
"source": [
"%matplotlib inline\n",
@ -49,7 +53,10 @@
"cell_type": "code",
"execution_count": 6,
"metadata": {
"scrolled": true
"scrolled": true,
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
@ -215,7 +222,11 @@
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -255,7 +266,11 @@
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"data": {
@ -404,7 +419,11 @@
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stderr",
@ -570,7 +589,11 @@
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -717,7 +740,11 @@
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -761,7 +788,11 @@
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"data": {
@ -909,7 +940,11 @@
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"data": {
@ -935,7 +970,11 @@
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -1023,7 +1062,11 @@
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"data": {
@ -1231,7 +1274,11 @@
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -1276,7 +1323,11 @@
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -1389,7 +1440,11 @@
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"metadata": {
"vscode": {
"languageId": "python"
}
},
"outputs": [
{
"name": "stdout",
@ -1427,18 +1482,6 @@
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
}
},
"nbformat": 4,

View File

@ -0,0 +1,117 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"# Learning Practice 2 for the University of Tulsa's QM-7063 Data Mining Course\n",
"# Dimension Reduction\n",
"# Professor: Dr. Abdulrashid, Spring 2023\n",
"# Noah L. Schrick - 1492657\n",
"\n",
"import heapq\n",
"from collections import defaultdict\n",
"\n",
"import pandas as pd\n",
"import matplotlib.pylab as plt\n",
"from mlxtend.frequent_patterns import apriori\n",
"from mlxtend.frequent_patterns import association_rules\n",
"\n",
"from surprise import Dataset, Reader, KNNBasic\n",
"from surprise.model_selection import train_test_split\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem 14.1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem 14.3"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"ename": "KeyError",
"evalue": "\"None of [Index(['userID', 'itemID', 'rating'], dtype='object')] are in the [columns]\"",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[0;32mIn[3], line 18\u001b[0m\n\u001b[1;32m 15\u001b[0m \u001b[39m# Convert the data set into the format required by the surprise package\u001b[39;00m\n\u001b[1;32m 16\u001b[0m \u001b[39m# The columns must correspond to user id, item id and ratings (in that order)\u001b[39;00m\n\u001b[1;32m 17\u001b[0m reader \u001b[39m=\u001b[39m Reader(rating_scale\u001b[39m=\u001b[39m(\u001b[39m1\u001b[39m, \u001b[39m5\u001b[39m))\n\u001b[0;32m---> 18\u001b[0m data \u001b[39m=\u001b[39m Dataset\u001b[39m.\u001b[39mload_from_df(courses_df[[\u001b[39m'\u001b[39;49m\u001b[39muserID\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39mitemID\u001b[39;49m\u001b[39m'\u001b[39;49m, \u001b[39m'\u001b[39;49m\u001b[39mrating\u001b[39;49m\u001b[39m'\u001b[39;49m]], reader)\n\u001b[1;32m 20\u001b[0m \u001b[39m# Split into training and test set\u001b[39;00m\n\u001b[1;32m 21\u001b[0m trainset, testset \u001b[39m=\u001b[39m train_test_split(data, test_size\u001b[39m=\u001b[39m\u001b[39m.25\u001b[39m, random_state\u001b[39m=\u001b[39m\u001b[39m1\u001b[39m)\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/frame.py:3811\u001b[0m, in \u001b[0;36mDataFrame.__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m 3809\u001b[0m \u001b[39mif\u001b[39;00m is_iterator(key):\n\u001b[1;32m 3810\u001b[0m key \u001b[39m=\u001b[39m \u001b[39mlist\u001b[39m(key)\n\u001b[0;32m-> 3811\u001b[0m indexer \u001b[39m=\u001b[39m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49mcolumns\u001b[39m.\u001b[39;49m_get_indexer_strict(key, \u001b[39m\"\u001b[39;49m\u001b[39mcolumns\u001b[39;49m\u001b[39m\"\u001b[39;49m)[\u001b[39m1\u001b[39m]\n\u001b[1;32m 3813\u001b[0m \u001b[39m# take() does not accept boolean indexers\u001b[39;00m\n\u001b[1;32m 3814\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39mgetattr\u001b[39m(indexer, \u001b[39m\"\u001b[39m\u001b[39mdtype\u001b[39m\u001b[39m\"\u001b[39m, \u001b[39mNone\u001b[39;00m) \u001b[39m==\u001b[39m \u001b[39mbool\u001b[39m:\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/indexes/base.py:6113\u001b[0m, in \u001b[0;36mIndex._get_indexer_strict\u001b[0;34m(self, key, axis_name)\u001b[0m\n\u001b[1;32m 6110\u001b[0m \u001b[39melse\u001b[39;00m:\n\u001b[1;32m 6111\u001b[0m keyarr, indexer, new_indexer \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39m_reindex_non_unique(keyarr)\n\u001b[0;32m-> 6113\u001b[0m \u001b[39mself\u001b[39;49m\u001b[39m.\u001b[39;49m_raise_if_missing(keyarr, indexer, axis_name)\n\u001b[1;32m 6115\u001b[0m keyarr \u001b[39m=\u001b[39m \u001b[39mself\u001b[39m\u001b[39m.\u001b[39mtake(indexer)\n\u001b[1;32m 6116\u001b[0m \u001b[39mif\u001b[39;00m \u001b[39misinstance\u001b[39m(key, Index):\n\u001b[1;32m 6117\u001b[0m \u001b[39m# GH 42790 - Preserve name from an Index\u001b[39;00m\n",
"File \u001b[0;32m~/.local/lib/python3.10/site-packages/pandas/core/indexes/base.py:6173\u001b[0m, in \u001b[0;36mIndex._raise_if_missing\u001b[0;34m(self, key, indexer, axis_name)\u001b[0m\n\u001b[1;32m 6171\u001b[0m \u001b[39mif\u001b[39;00m use_interval_msg:\n\u001b[1;32m 6172\u001b[0m key \u001b[39m=\u001b[39m \u001b[39mlist\u001b[39m(key)\n\u001b[0;32m-> 6173\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mKeyError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39mNone of [\u001b[39m\u001b[39m{\u001b[39;00mkey\u001b[39m}\u001b[39;00m\u001b[39m] are in the [\u001b[39m\u001b[39m{\u001b[39;00maxis_name\u001b[39m}\u001b[39;00m\u001b[39m]\u001b[39m\u001b[39m\"\u001b[39m)\n\u001b[1;32m 6175\u001b[0m not_found \u001b[39m=\u001b[39m \u001b[39mlist\u001b[39m(ensure_index(key)[missing_mask\u001b[39m.\u001b[39mnonzero()[\u001b[39m0\u001b[39m]]\u001b[39m.\u001b[39munique())\n\u001b[1;32m 6176\u001b[0m \u001b[39mraise\u001b[39;00m \u001b[39mKeyError\u001b[39;00m(\u001b[39mf\u001b[39m\u001b[39m\"\u001b[39m\u001b[39m{\u001b[39;00mnot_found\u001b[39m}\u001b[39;00m\u001b[39m not in index\u001b[39m\u001b[39m\"\u001b[39m)\n",
"\u001b[0;31mKeyError\u001b[0m: \"None of [Index(['userID', 'itemID', 'rating'], dtype='object')] are in the [columns]\""
]
}
],
"source": [
"## Read in Course Topics data\n",
"courses_df = pd.read_csv('Coursetopics.csv')\n",
"\n",
"reader = Reader(rating_scale=(0, 1))\n",
"data = Dataset.load_from_df(ratings[['customerID', 'movieID', 'rating']], reader)\n",
"trainset = data.build_full_trainset()\n",
"sim_options = {'name': 'cosine', 'user_based': False} # compute cosine similarities between items\n",
"algo = KNNBasic(sim_options=sim_options)\n",
"algo.fit(trainset)\n",
"pred = algo.predict(str(823519), str(30), r_ui=4, verbose=True)"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"# Problem 14.4"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.9"
},
"vscode": {
"interpreter": {
"hash": "767d51c1340bd893661ea55ea3124f6de3c7a262a8b4abca0554b478b1e2ff90"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}