{ "cells": [ { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [], "source": [ "# Learning Practice 2 for the University of Tulsa's QM-7063 Data Mining Course\n", "# Dimension Reduction\n", "# Professor: Dr. Abdulrashid, Spring 2023\n", "# Noah L. Schrick - 1492657\n", "\n", "import pandas as pd\n", "import numpy as np\n", "from sklearn.decomposition import PCA\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "## Read in Breakfast Cereal data\n", "cereals_df = pd.read_csv('Cereals.csv')\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
| \n", " | mean | \n", "median | \n", "min | \n", "max | \n", "sd | \n", "
|---|---|---|---|---|---|
| calories | \n", "106.883117 | \n", "110.00 | \n", "50.00 | \n", "160.0 | \n", "19.484119 | \n", "
| sodium | \n", "159.675325 | \n", "180.00 | \n", "0.00 | \n", "320.0 | \n", "83.832295 | \n", "
| protein | \n", "2.545455 | \n", "3.00 | \n", "1.00 | \n", "6.0 | \n", "1.094790 | \n", "
| fat | \n", "1.012987 | \n", "1.00 | \n", "0.00 | \n", "5.0 | \n", "1.006473 | \n", "
| fiber | \n", "2.151948 | \n", "2.00 | \n", "0.00 | \n", "14.0 | \n", "2.383364 | \n", "
| carbo | \n", "14.802632 | \n", "14.50 | \n", "5.00 | \n", "23.0 | \n", "3.907326 | \n", "
| sugars | \n", "7.026316 | \n", "7.00 | \n", "0.00 | \n", "15.0 | \n", "4.378656 | \n", "
| potass | \n", "98.666667 | \n", "90.00 | \n", "15.00 | \n", "330.0 | \n", "70.410636 | \n", "
| weight | \n", "1.029610 | \n", "1.00 | \n", "0.50 | \n", "1.5 | \n", "0.150477 | \n", "
| cups | \n", "0.821039 | \n", "0.75 | \n", "0.25 | \n", "1.5 | \n", "0.232716 | \n", "