commit 40ba9c33487af72037c5789f90466d63208ec2dd Author: noah Date: Fri Apr 21 20:36:43 2023 -0500 Adding table and data diff --git a/Schrick-Noah_Learning-Practice-10.ipynb b/Schrick-Noah_Learning-Practice-10.ipynb new file mode 100644 index 0000000..e319e00 --- /dev/null +++ b/Schrick-Noah_Learning-Practice-10.ipynb @@ -0,0 +1,174 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Learning Practice 10 for the University of Tulsa's QM-7063 Data Mining Course\n", + "# Evaluating Predictive Performance\n", + "# Professor: Dr. Abdulrashid, Spring 2023\n", + "# Noah L. Schrick - 1492657" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Imports" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import pandas as pd" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Problem 5.7 \n", + "Table 5.7 shows a small set of predictive model validation results for a classification\n", + "model, with both actual values and propensities.\n", + "\n", + "| Propensity of 1 | Actual |\n", + "|-----------------|-----------------|\n", + "| 0.03 | 0 |\n", + "| 0.52 | 0 |\n", + "| 0.38 | 0 |\n", + "| 0.82 | 1 |\n", + "| 0.33 | 0 |\n", + "| 0.42 | 0 |\n", + "| 0.55 | 1 |\n", + "| 0.59 | 0 |\n", + "| 0.09 | 0 |\n", + "| 0.21 | 0 |\n", + "| 0.43 | 0 |\n", + "| 0.04 | 0 |\n", + "| 0.08 | 0 |\n", + "| 0.13 | 0 |\n", + "| 0.01 | 0 |\n", + "| 0.79 | 1 |\n", + "| 0.42 | 0 |\n", + "| 0.29 | 0 |\n", + "| 0.08 | 0 |\n", + "| 0.02 | 0 |" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# a.\n", + "Calculate error rates, sensitivity, and specificity using cutoffs of 0.25, 0.5, and 0.75." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Propensity of 1 Actual\n", + "0 0.03 0\n", + "1 0.52 0\n", + "2 0.38 0\n", + "3 0.82 1\n", + "4 0.33 0\n", + "5 0.42 0\n", + "6 0.55 1\n", + "7 0.59 0\n", + "8 0.09 0\n", + "9 0.21 0\n", + "10 0.43 0\n", + "11 0.04 0\n", + "12 0.08 0\n", + "13 0.13 0\n", + "14 0.01 0\n", + "15 0.79 1\n", + "16 0.42 0\n", + "17 0.29 0\n", + "18 0.08 0\n", + "19 0.02 0\n" + ] + } + ], + "source": [ + "data = [\n", + " [0.03, 0],\n", + " [0.52, 0],\n", + " [0.38, 0], \n", + " [0.82, 1], \n", + " [0.33, 0], \n", + " [0.42, 0], \n", + " [0.55, 1], \n", + " [0.59, 0], \n", + " [0.09, 0], \n", + " [0.21, 0], \n", + " [0.43, 0], \n", + " [0.04, 0], \n", + " [0.08, 0], \n", + " [0.13, 0], \n", + " [0.01, 0], \n", + " [0.79, 1], \n", + " [0.42, 0], \n", + " [0.29, 0], \n", + " [0.08, 0],\n", + " [0.02, 0]\n", + " ]\n", + "\n", + "table = pd.DataFrame(data, columns = ['Propensity of 1', 'Actual'])\n", + "print(table)" + ] + }, + { + "attachments": {}, + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# b.\n", + "Create a decile lift chart." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.10" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +}