# Learning Practice 1 for the University of Tulsa's QM-7063 Data Mining Course # Intro to data visualization # Professor: Dr. Abdulrashid, Spring 2023 # Noah L. Schrick - 1492657 import pandas as pd import matplotlib.pyplot as plt ## Load, convert Amtrak data for time series analysis Amtrak_df = pd.read_csv('Amtrak.csv').squeeze("columns") Amtrak_df['Date'] = pd.to_datetime(Amtrak_df.Month, format='%d/%m/%Y') ridership_ts = pd.Series(Amtrak_df.Ridership.values, index=Amtrak_df.Date) ## Boston housing data housing_df = pd.read_csv('BostonHousing.csv') housing_df = housing_df.rename(columns={'CAT. MEDV': 'CAT_MEDV'}) # compute mean MEDV per CHAS = (0, 1) dataForPlot = housing_df.groupby('CHAS').mean().MEDV fig, ax = plt.subplots() ax.bar(dataForPlot.index, dataForPlot, color=['C5', 'C1']) #ax.set_xticks([0, 1], False) ax.set_xlabel('CHAS') ax.set_ylabel('Avg. MEDV')