54 lines
1.3 KiB
R
54 lines
1.3 KiB
R
katz.cent <- function(A, alpha=NULL, beta=NULL){ #NULL sets the default value
|
|
g <- A
|
|
if (class(A) == 'igraph'){
|
|
#Error checking. Turn into adj matrix.
|
|
A <- get.adjacency(A)
|
|
}
|
|
|
|
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
|
if (is.null(alpha)){
|
|
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
|
}
|
|
|
|
n <- nrow(A)
|
|
if (is.null(beta)){
|
|
beta <- matrix(rep(1/n, n),ncol=1)
|
|
}
|
|
|
|
#Katz scores
|
|
scores <- solve(diag(n) - alpha*A,beta)
|
|
names(scores) <- V(g)$name
|
|
|
|
return(scores)
|
|
}
|
|
|
|
sg.katz <- function(A, alpha=NULL, beta=NULL){
|
|
g <- A
|
|
if (class(A) == 'igraph'){
|
|
# Error checking. Turn into adj matrix if needed.
|
|
A <- get.adjacency(A)
|
|
}
|
|
|
|
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
|
if (is.null(alpha)){
|
|
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
|
}
|
|
|
|
A.eigs <- eigen(A)
|
|
V <- A.eigs$vectors # where columns are the v_i terms
|
|
lams <- A.eigs$values
|
|
n <- length(lams)
|
|
|
|
# Create subfunction to compute centrality for one node, then use sapply
|
|
# for all nodes
|
|
|
|
subg.node.i <- function(i){sum(V[i,]^2/(1-alpha*lams))}
|
|
|
|
subg.all <- sapply(1:n, subg.node.i)
|
|
|
|
# Add names to output
|
|
names(subg.all) <- V(g)$name
|
|
|
|
|
|
return(subg.all)
|
|
} |