Graph laplacian

This commit is contained in:
Noah L. Schrick 2022-04-30 15:29:07 -05:00
parent 7918b890a1
commit d7e9098582
2 changed files with 124 additions and 0 deletions

81
self_estrada.R Normal file
View File

@ -0,0 +1,81 @@
estrada.index <- function(A, beta=NULL){
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
lam.dom <- eigen(A)$values[1] #dom eigenvec
A.eigs <- eigen(A)
V <- A.eigs$vectors # where columns are the v_i terms
lams <- A.eigs$values
n <- length(lams)
# Create subfunction to compute centrality for one node, then use sapply
# for all nodes
subg.node.i <- function(i){sum(V[i,]^2*exp(beta*lams))}
subg.all <- sapply(1:n, subg.node.i)
EE <- sum(subg.all)
return(EE)
}
microstate.prob <- function(A, beta=NULL){
EE <- estrada.index(A, beta)
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
A.eigs <- eigen(A)
lams <- A.eigs$values
probs <- (exp(beta*lams))/EE
# Experiment with lambda being negative
#probs <- (exp(beta*-lams))/EE
# Add names to output
names(probs) <- V(g)$name
return(probs)
}
entropy <- function(A, beta=NULL, kb=NULL){
microstate_probs <- microstate.prob(A, beta)
EE <- estrada.index(A, beta)
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
if (is.null(kb)){
kb <- 1.0
}
lam.dom <- eigen(A)$values[1] #dom eigenvec
A.eigs <- eigen(A)
V <- A.eigs$vectors # where columns are the v_i terms
lams <- A.eigs$values
S <- -kb*beta*sum(lams*microstate_probs)+kb*log(EE)*sum(microstate_probs)
return(S)
}

43
self_newman_mod.R Normal file
View File

@ -0,0 +1,43 @@
newman_mod <- function(g, weights=NULL){
A <- get.adjacency(g) # adj
m <- ecount(g)
n <- vcount(g)
if (is.null(weights)){
weights <- rep(1,n)
}
# Obtain the modularity matrix
B.node.i <- function(i){degree(g)[i]*degree(g)}
B.node.all <- sapply(1:n, B.node.i)
B <- A - (B.node.all/(2*m))
# NOTE: This is identical to: modularity_matrix(g) ! Can verify with:
# modularity_matrix(g) == B
B.eigs <- eigen(B)
max.lam <- B.eigs$values[1]
s <- ifelse(B.eigs$vectors[,1]>0,1,-1)
weights <- B.eigs$vectors[n]/B.eigs$vectors[,1]
# Plotting
#V(g)$color <- ifelse(B[1,]>0,"green","yellow")
V(g)$color <- ifelse(B.eigs$vectors[,1]>0,"green","yellow")
V(g)$size <- 10
plot(g, main=paste(g.netname, " Newman Modularity"))
clust1 = list()
clust2 = list()
clusters = list()
# Make list of clusters
for(i in 1:n){
ifelse(V(g)[i]$color=="green",
clust1 <- append(clust1, V(g)[i]$name),
clust2 <- append(clust2, V(g)[i]$name))}
clusters <- list(clust1, clust2)
Q.node.i <- function(i){sum(
(((B.eigs$vectors[i])*weights[i]*s)^2)*B.eigs[i]$values)}
Q <- (1/(4*m))*sapply(1:n, Q.node.i)
return(list(Q=Q,max.lam=max.lam,weights=weights,clusters=clusters))
}