# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast ################# Linear model: Least-Squares Fit ################# g.hist <- hist(degree(g), freq=FALSE) g.seq <- 0:max(degree(g)) # x-axis g.breaks <- g.hist$breaks[-c(1,2)] # remove 0 and low degrees g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.breaks[nz.probs.mask] plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) coef(g.fit)[2] ################# Max-Log-Likelihood #################