Network-Clustering/self_newman_mod.R

44 lines
1.2 KiB
R

newman_mod <- function(g, weights=NULL){
A <- get.adjacency(g) # adj
m <- ecount(g)
n <- vcount(g)
if (is.null(weights)){
weights <- rep(1,n)
}
# Obtain the modularity matrix
B.node.i <- function(i){degree(g)[i]*degree(g)}
B.node.all <- sapply(1:n, B.node.i)
B <- A - (B.node.all/(2*m))
# NOTE: This is identical to: modularity_matrix(g) ! Can verify with:
# modularity_matrix(g) == B
B.eigs <- eigen(B)
max.lam <- B.eigs$values[1]
s <- ifelse(B.eigs$vectors[,1]>0,1,-1)
weights <- B.eigs$vectors[n]/B.eigs$vectors[,1]
# Plotting
#V(g)$color <- ifelse(B[1,]>0,"green","yellow")
V(g)$color <- ifelse(B.eigs$vectors[,1]>0,"green","yellow")
V(g)$size <- 10
plot(g, main=paste(g.netname, " Newman Modularity"))
clust1 = list()
clust2 = list()
clusters = list()
# Make list of clusters
for(i in 1:n){
ifelse(V(g)[i]$color=="green",
clust1 <- append(clust1, V(g)[i]$name),
clust2 <- append(clust2, V(g)[i]$name))}
clusters <- list(clust1, clust2)
Q.node.i <- function(i){sum(
(((B.eigs$vectors[i])*weights[i]*s)^2)*B.eigs[i]$values)}
Q <- (1/(4*m))*sapply(1:n, Q.node.i)
return(list(Q=Q,max.lam=max.lam,weights=weights,clusters=clusters))
}