# Homework 3 for the University of Tulsa' s CS-7863 Network Theory Course # Network Clustering # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 # Imports library(igraph) library(igraphdata) library(WGCNA) data(karate) data(yeast) g1 <- karate g1.netname <- "Karate" g2 <- yeast g2.netname <- "Yeast" ##################### Part 1: Laplace Spectral Clustering ##################### ########################## Part 2: Newman Modularity ########################## ##################### Part 3: Recursive Newman Modularity ##################### # Using igraph karate.modularity <- fastgreedy.community(karate,merges=TRUE, modularity=TRUE, membership=TRUE) #memberships <-community.to.membership(karate, karate.modularity$merges, # steps=which.max(fgreedy$modularity)-1) karate.modularity$membership karate.modularity$merges membership.ids <- unique(karate.modularity$membership) membership.ids cat(paste('Number of detected communities =',length(membership.ids))) cat("community sizes: ") sapply(membership.ids,function(x) {sum(x==karate.modularity$membership)}) cat("modularity: ") max(karate.modularity$modularity) #karate.modularity$modularity V(karate)$color[karate.modularity$membership==1] <- "green" V(karate)$color[karate.modularity$membership==2] <- "red" V(karate)$color[karate.modularity$membership==3] <- "blue" plot(karate,vertex.size=10,vertex.label=V(karate)$label,vertex.color=V(karate)$color) ###################### Part 4: TOM and Dynamic Tree Cut ###################### ################################ Part 5: UMAP ################################