MSThesis/Schrick-Noah_MS-Thesis.lof

29 lines
3.6 KiB
Plaintext

{\vspace {\baselineskip }}
\contentsline {figure}{\numberline {3.1}{\ignorespaces Path Walking to State 14\relax }}{9}{}%
\contentsline {figure}{\numberline {3.2}{\ignorespaces Color Coding a Small Network Based on Violations\relax }}{10}{}%
\contentsline {figure}{\numberline {4.1}{\ignorespaces A network without Synchronous Firing generating infeasible states\relax }}{19}{}%
\contentsline {figure}{\numberline {4.2}{\ignorespaces Inclusion of Synchronous Firing into GNU Bison, GNU Flex, and the overall program\relax }}{22}{}%
\contentsline {figure}{\numberline {4.3}{\ignorespaces Synchronous Firing in the Graph Generation Process\relax }}{24}{}%
\contentsline {figure}{\numberline {4.4}{\ignorespaces Bar Graph and Line Graph Representations of Synchronous Firing on Runtime\relax }}{26}{}%
\contentsline {figure}{\numberline {4.5}{\ignorespaces Bar Graph and Line Graph Representations of Synchronous Firing on State Space\relax }}{27}{}%
\contentsline {figure}{\numberline {4.6}{\ignorespaces Speedup Obtained When Using Synchronous Firing\relax }}{27}{}%
\contentsline {figure}{\numberline {5.1}{\ignorespaces Task Overview of the Attack and Compliance Graph Generation Process\relax }}{31}{}%
\contentsline {figure}{\numberline {5.2}{\ignorespaces Node Allocation for each Task\relax }}{33}{}%
\contentsline {figure}{\numberline {5.3}{\ignorespaces Data Distribution of Task One\relax }}{35}{}%
\contentsline {figure}{\numberline {5.4}{\ignorespaces Communication From Task 1 to Task 2 when the Number of Nodes Allocated is Equal\relax }}{36}{}%
\contentsline {figure}{\numberline {5.5}{\ignorespaces Communication From Task 1 to Task 2 when Task 1 Has More Nodes Allocated\relax }}{37}{}%
\contentsline {figure}{\numberline {5.6}{\ignorespaces Example of a Not Applicable Exploit for the MPI Tasking Testing\relax }}{41}{}%
\contentsline {figure}{\numberline {5.7}{\ignorespaces Speedup and Efficiency of the MPI Tasking Approach for a Varying Number of Compute Nodes with an Increasing Problem Size\relax }}{41}{}%
\contentsline {figure}{\numberline {5.8}{\ignorespaces Results for the MPI Tasking Approach in Terms of Runtime in Milliseconds\relax }}{42}{}%
\contentsline {figure}{\numberline {5.9}{\ignorespaces Results for the MPI Tasking Approach in Terms of Speedup\relax }}{42}{}%
\contentsline {figure}{\numberline {5.10}{\ignorespaces Results for the MPI Tasking Approach in Terms of Efficiency\relax }}{42}{}%
\contentsline {figure}{\numberline {5.11}{\ignorespaces Example Graph Using the MPI Subgraphing Approach\relax }}{44}{}%
\contentsline {figure}{\numberline {5.12}{\ignorespaces Frontier Merging and Data Distribution Process\relax }}{46}{}%
\contentsline {figure}{\numberline {5.13}{\ignorespaces First iteration results of MPI Subgraphing in terms of Runtime\relax }}{48}{}%
\contentsline {figure}{\numberline {5.14}{\ignorespaces First iteration results of MPI Subgraphing in terms of Speedup and Efficiency\relax }}{49}{}%
\contentsline {figure}{\numberline {5.15}{\ignorespaces Modified Subgraphing Example Graph with Two New Edges\relax }}{51}{}%
\contentsline {figure}{\numberline {5.16}{\ignorespaces Duplicate States Explored vs Actual Number of States for the 1-4 Service Tests\relax }}{52}{}%
\contentsline {figure}{\numberline {5.17}{\ignorespaces Speedup and Efficiency of MPI Subgraphing when using a DHT\relax }}{54}{}%
\contentsline {figure}{\numberline {5.18}{\ignorespaces Runtime of MPI Subgraphing when using a DHT vs not using a DHT\relax }}{55}{}%
\contentsline {figure}{\numberline {6.1}{\ignorespaces Possible Method for Blending MPI and OpenMP for Task 2 of the MPI Tasking Approach\relax }}{59}{}%