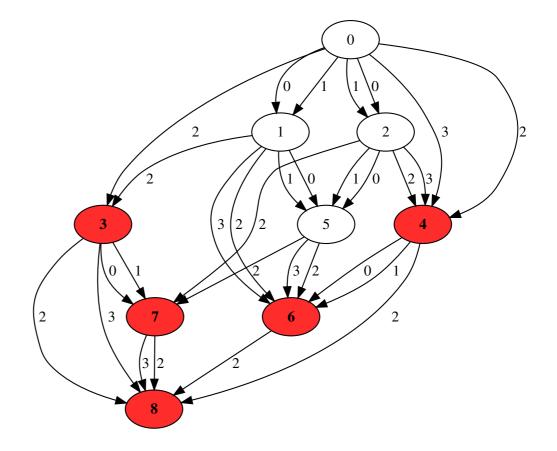


IEEE SoutheastCon 2024 - Atlanta, GA "Engineering the Future"

Application-Level Checkpoint/Restart for Large-Scale Attack and Compliance Graphs

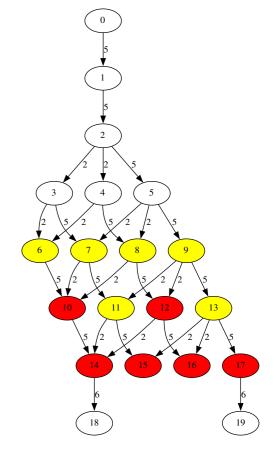
Noah L. Schrick, Peter J. Hawrylak
University of Tulsa
Track#3
Session:
Presentation Date



Introduction (1/2)

Overview

- Attack Graph -
 - Determine all possible ways systems may be compromised [1]
- Compliance Graph -
 - Determine all possible ways systems may fall out of compliance [2]



Introduction (2/2)

Terminology/Descriptions

- Nodes
 - States within the graph.
 - Have system information embedded within the object.
 - Example: Windows 10 machine, pfSense firewall, 2006 Toyota Corolla
- Edges
 - Transitions within the graph.
 - Events that lead to a change in the system(s) or environment(s).
 - Example: Installing or updating software/hardware, regularly occurring maintenance, spread of malware

Challenges (1/2)

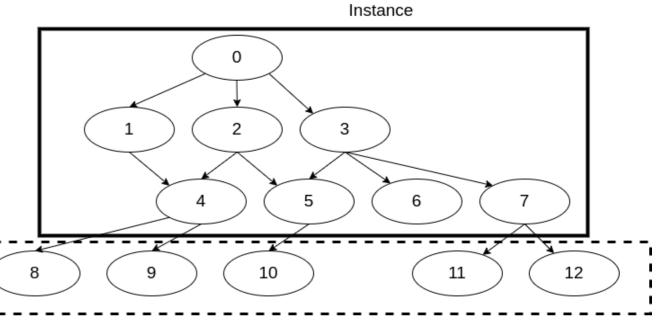
Challenges with Attack and Compliance Graphs

- Scalability (State Space Explosion) [3, 7]
 - The exponential growth of states and edges caused through minimal additions of assets, qualities, or events.
 - Leads to graphs with hundreds of millions of nodes, and billions of edges.
- High Runtime Requirements [3-7]
 - Real-world performance of graph operations does not align with the theoretical assumption.
 - Scalability large graphs take exceedingly long to generate.
 - Example: Installing or updating software/hardware, regularly occurring maintenance, spread of malware

Challenges (2/2)

Implications

- Graphs and graph operations cannot be contained within non-volatile memory (RAM).
 - Out-of-memory killers will terminate the generation process.
- Outages, HPC cycle exhaustion, or other interruption forces a complete re-generation of the graphs.
 - Can result in a loss of weeks' worth of processing.



Memory Constraint

Two Primary Pain Points

- 1) The queue of unexplored node
 - "Frontier"
 - Caused by the Breadth-Firs Search generation approac
- 2) The graph object
 - "Instance"
 - All explored nodes (and the embedded information), edges, flags, or auxiliary graph labels or features

Related Works

Specific to Attack and Compliance Graphs

- Efficient storage techniques [13, 14].
- Logic-based generation [15].
- Alternate information representation schemes [16, 17].
- Sampling [18].
- Parallelization [19].

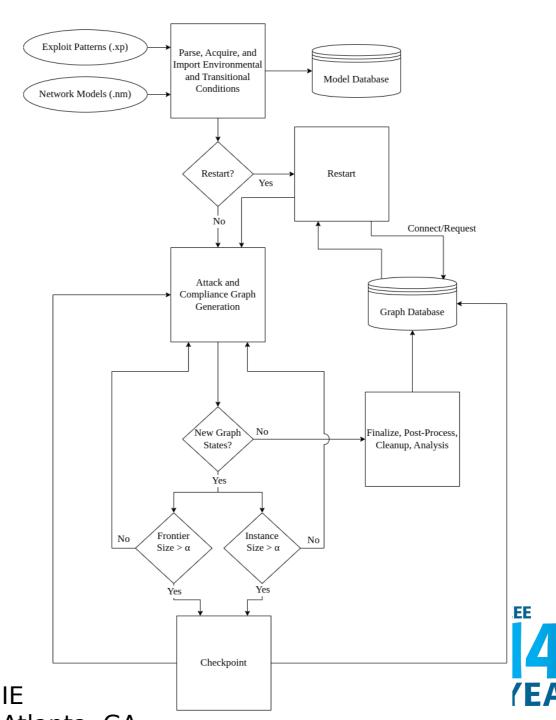
Checkpoint/Restart (C/R)

Introduction

- A technique that saves the state of a program mid-execution, and allows for a restart from a saved state.
- Three categories [8, 9]:
 - System-level
 - Requires compatibility with the operating system, and any application libraries (e.g., MPI).
 - Large in scope: can restore process IDs, checkpoint shell scripts, sockets, threads, file processing.
 - User-level
 - Large, application-independent checkpoints that are linked through libraries.
 - Application-level
 - Built into an application's source code.
 - Goal: only handle the necessary information.

Goal of This Work

Implement Application-level C/R


- Minimal checkpoints for fast, efficient checkpoint and restart procedures.
 - C/R will also be portable, and independent of external libraries or operating systems.
- Benefits are twofold:
 - Provides a form of fault-tolerance in the event of interruption.
 - Provides a means of memory relief by dumping excess, no longer relevant graph instances during checkpoint intervals.

Overview

Generation Process

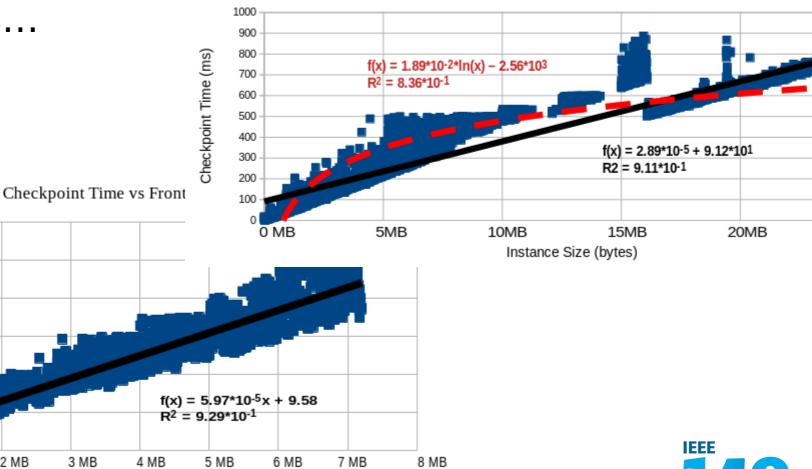
Checkpointing

Description

Restarting

Description

Results - Checkpointing



25MB

Description

• Details...

600

500

400

300

200

100

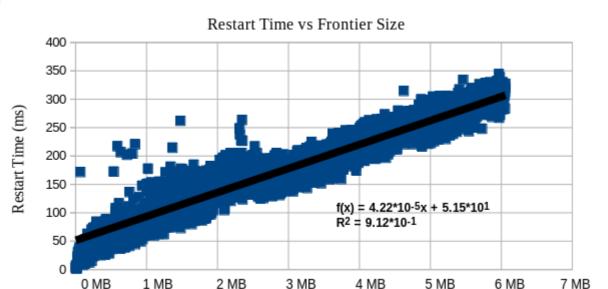
0 MB

1 MB

2 MB

3 MB

4 MB


Frontier Size (bytes)

Checkpoint Time (ms)

Results - Restarting

Description

• Details...

Frontier Size (bytes)

Conclusions

Description

Future Work

Description

References

Description

Thank You!

