CS-7863-Sci-Stat-Proj-6/Schrick-Noah_graphs.R

43 lines
1.2 KiB
R

source("Schrick-Noah_Simulated-Data.R")
if (!require("igraph")) install.packages("igraph")
library(igraph)
if (!require("Matrix")) install.packages("Matrix")
library(Matrix) # bdiag
sim_graph_data <- function(){
npc <-25 # nodes per cluster
n_clust <- 4 # 4 clusters with 25 nodes each
# no clusters
g0 <- erdos.renyi.game(npc*n_clust, 0.2)
plot(g0)
matlist = list()
for (i in 1:n_clust){
matlist[[i]] = get.adjacency(erdos.renyi.game(npc, 0.2))
}
# merge clusters into one matrix
mat_clust <- bdiag(matlist) # create block-diagonal matrix
## the following two things might not be necessary
# check for loner nodes, connected to nothing, and join them to something
k <- rowSums(mat_clust)
node_vector <- seq(1,npc*n_clust)
for (i in node_vector){
if (k[i]==0){ # if k=0, connect to something random
j <- sample(node_vector[-i],1)
mat_clust[i,j] <- 1
mat_clust[j,i] <- 1
}
}
node_colors <- c(rep("red",npc), rep("green",npc), rep("blue",npc), rep("orange",npc))
g1 <- graph_from_adjacency_matrix(mat_clust, mode="undirected", diag=F)
plot(g1, vertex.color=node_colors)
### Dataset with g1
bundled_graph_data <- create_data(graph.structure=g1)
return(bundled_graph_data)
}