# Homework 6 for the University of Tulsa's CS-7863 Sci-Stat Course # Penalized Machine Learning # Professor: Dr. McKinney, Spring 2023 # Noah L. Schrick - 1492657 if (!require("data.table")) install.packages("data.table") library(data.table) # 1. Penalized Regression and Classification ## a. Modified Ridge classification for LASSO penalties source("Schrick-Noah_Ridge-LASSO-Regression.R") ### Use npdro simulated data to test source("Schrick-Noah_Simulated-Data.R") bundled_data <- create_data() ### LASSO unpen_beta <- unpen_coeff(bundled_data$train.X, bundled_data$train.y) lasso.df <- data.frame(att=c("intercept", colnames(bundled_data$train.X)), scores=unpen_beta$betas, abs_scores=abs(unpen_beta$betas)) lasso.res <- dplyr::slice_max(lasso.df,order_by=abs_scores,n=20) lasso.table <- as.data.table(lasso.res) ### Compare with Ridge #### Find lambda tune_results <- tune_ridge(bundled_data$train.X, bundled_data$train.y, num_folds=10, 2^seq(-5,5,1), verbose=F) plot(log(tune_results$cv.table$hyp), tune_results$cv.table$means, type="l", xlab="lambda", ylab="CV Mean Loss") abline(v=tune_results$lam.min) tune_results$lam.min #### Use lam.min for Ridge Regression ridge_result <- ridge_betas(bundled_data$train.X, bundled_data$train.y, beta_init = NULL, lam=tune_results$lam.min, method="BFGS") ridge.df <- data.frame(att=c("intercept", colnames(bundled_data$train.X)), scores=ridge_result$betas, abs_scores=abs(ridge_result$betas)) ridge.res <- dplyr::slice_max(ridge.df,order_by=abs_scores,n=20) ridge.table <- as.data.table(ridge.res) ### Compare with Random Forest source("Schrick-Noah_Random-Forest.R") rf_result <- rf_comp(bundled_data$train) rf.df <- data.frame(att=c(colnames(bundled_data$train.X)), scores=rf_result$rf2_imp$rf_score) rf_res <- dplyr::slice_max(rf.df,order_by=scores, n=20) rf.table <- as.data.table(rf_res) ### Compare with glmnet source("Schrick-Noah_glmnet.R") #### Alpha = 0 glm.res.0 <- glm_fcn(bundled_data$train.X, bundled_data$train.y, 0) glm.df.0 <- data.frame(att=c("intercept", colnames(bundled_data$train.X)), scores=glm.res.0$lambda.1se, abs_scores=glm.res.0$abs_scores) glm.df.0.res <- dplyr::slice_max(glm.df.0,order_by=abs_scores,n=20) glm.0.table <- as.data.table(glm.df.0.res) #### Alpha = 1 glm.res.1 <- glm_fcn(bundled_data$train.X, bundled_data$train.y, 1) # alpha=1 glm.df.1 <- data.frame(att=c("intercept", colnames(bundled_data$train.X)), scores=glm.res.1$lambda.1se, abs_scores=glm.res.1$abs_scores) glm.df.1.res <- dplyr::slice_max(glm.df.1,order_by=abs_scores,n=20) glm.1.table <- as.data.table(glm.df.1.res) ## b. Repeat comparison using a graph with clusters if (!require("igraph")) install.packages("igraph") library(igraph) if (!require("Matrix")) install.packages("Matrix") library(Matrix) # bdiag npc <-25 # nodes per cluster n_clust <- 4 # 4 clusters with 25 nodes each # no clusters g0 <- erdos.renyi.game(npc*n_clust, 0.2) plot(g0) matlist = list() for (i in 1:n_clust){ matlist[[i]] = get.adjacency(erdos.renyi.game(npc, 0.2)) } # merge clusters into one matrix mat_clust <- bdiag(matlist) # create block-diagonal matrix ## the following two things might not be necessary # check for loner nodes, connected to nothing, and join them to something k <- rowSums(mat_clust) node_vector <- seq(1,npc*n_clust) for (i in node_vector){ if (k[i]==0){ # if k=0, connect to something random j <- sample(node_vector[-i],1) mat_clust[i,j] <- 1 mat_clust[j,i] <- 1 } } node_colors <- c(rep("red",npc), rep("green",npc), rep("blue",npc), rep("orange",npc)) g1 <- graph_from_adjacency_matrix(mat_clust, mode="undirected", diag=F) plot(g1, vertex.color=node_colors) ### Dataset with g1 dataset.graph <- npdro::createSimulation2(num.samples=num.samples, num.variables=num.variables, pct.imbalance=0.5, pct.signals=0.2, main.bias=0.5, interaction.bias=1, hi.cor=0.95, lo.cor=0.2, mix.type="main-interactionScalefree", label="class", sim.type="mixed", pct.mixed=0.5, pct.train=0.5, pct.holdout=0.5, pct.validation=0, plot.graph=F, graph.structure = g1, verbose=T) train.graph <- dataset.graph$train #150x101 test.graph <- dataset.graph$holdout validation.graph <- dataset.graph$validation dataset.graph$signal.names colnames(train.graph) # separate the class vector from the predictor data matrix train.graph.X <- train.graph[, -which(colnames(train.graph) == "class")] train.graph.y <- train.graph[, "class"] train.graph.y.01 <- as.numeric(train.graph.y)-1 ## c. Use npdro and igraph to create knn my.k <- 3 # larger k, fewer clusters npdr.nbpairs.idx <- npdro::nearestNeighbors(t(train.X), # transpose does dist between predictors # without transpose does dist between samples #nbd.method="multisurf", k=0, nbd.method = "relieff", nbd.metric="manhattan", k=my.k) knn.graph <- graph_from_edgelist(as.matrix(npdr.nbpairs.idx), directed=F) knn.graph <- simplify(knn.graph) ### Plot network plot.igraph(knn.graph,layout=layout_with_fr(knn.graph), vertex.color="red", vertex.size=3,vertex.label=NA, main="Manhattan, knn-graph") ## d. Add Laplace graph penalty ### Find resulting beta coeffs ### Optimize or choose value for lambda2 ### Compare to a) and b) # 2. Gradient Descent ## Write fn with learning param grad.rosen <- function(xvec, a=2, b=100){ x <- xvec[1]; y <- xvec[2]; f.x <- -2*(a-x) - 4*b*x*(y-x^2) f.y <- 2*b*(y-x^2) return( c(f.x, f.y)) } a = 2 b=100 alpha = .0001 # learning rate p = c(0,0) # start for momentum xy = c(-1.8, 3.0) # guess for solution # gradient descent epochs = 1000000 for (epoch in 1:epochs){ p = -grad.rosen(xy,a,b); xy = xy + alpha*p; } print(xy) # Should be: ~(2,4) # Using optim: f.rosen <- function(xvec, a=2, b=100){ #a <- 2; b <- 1000; x <- xvec[1]; y <- xvec[2]; return ( (a-x)^2 + b*(y-x^2)^2) } sol.BFGS <- optim(par=c(-1.8,3.0), fn=function(x){f.rosen(x,a=2,b=100)}, gr=function(x){grad.rosen(x,a=2,b=100)}, method="BFGS") sol.BFGS$par