unpenalized regression coefficients. simulated data using npdro

This commit is contained in:
Noah L. Schrick 2023-04-12 19:05:18 -05:00
parent 21ac5a3ad0
commit ca21002f65

View File

@ -5,10 +5,55 @@
# 1. Penalized Regression and Classification
## a. Modified Ridge classification for LASSO penalties
# gradient descent to optimize beta's
ridge_betas <- function(X,y,beta_init=NULL,lam, alpha=0, method="BFGS"){
if (is.null(beta_init)){beta_init <- rep(.1, ncol(X)+1)}
# method: BFGS, CG, Nelder-Mead
no_penalty_cg <- optim(beta_init, # guess
fn=function(beta){penalized_loss(X, y, beta, lam, alpha=0)}, # objective
gr=function(beta){ridge_grad(X, y, beta, lam)}, # gradient
method = method) #, control= list(trace = 2))
return(list(loss=no_penalty_cg$value, betas = no_penalty_cg$par))
}
### Add cross-validation to tune penalty param
lasso_betas <- function(X,y){
ridge_betas(X,y,beta_init=NULL,lam=0,alpha=0,method="BFGS")
}
### Use npdro simulated data to test
if (!require("devtools")) install.packages("devtools")
library(devtools)
install_github("insilico/npdro")
if (!require("npdro")) install.packages("npdro")
library(npdro)
if (!require("dplyr")) install.packages("dplyr")
library(dplyr)
num.samples <- 300
num.variables <- 100
dataset <- npdro::createSimulation2(num.samples=num.samples,
num.variables=num.variables,
pct.imbalance=0.5,
pct.signals=0.2,
main.bias=0.5,
interaction.bias=1,
hi.cor=0.95,
lo.cor=0.2,
mix.type="main-interactionScalefree",
label="class",
sim.type="mixed",
pct.mixed=0.5,
pct.train=0.5,
pct.holdout=0.5,
pct.validation=0,
plot.graph=F,
graph.structure = NULL,
verbose=T)
train <- dataset$train #150x101
test <- dataset$holdout
validation <- dataset$validation
dataset$signal.names
colnames(train)
### Compare with Ridge
@ -134,7 +179,6 @@ plot.igraph(knn.graph,layout=layout_with_fr(knn.graph),
# 2. Gradient Descent
## Write fn with learning param
grad.rosen <- function(xvec, a=2, b=100){
#a <- 2; b <- 1000;
x <- xvec[1];
y <- xvec[2];
f.x <- -2*(a-x) - 4*b*x*(y-x^2)
@ -168,4 +212,4 @@ f.rosen <- function(xvec, a=2, b=100){
sol.BFGS <- optim(par=c(-1.8,3.0), fn=function(x){f.rosen(x,a=2,b=100)},
gr=function(x){grad.rosen(x,a=2,b=100)}, method="BFGS")
sol.BFGS$par
sol.BFGS$par