CS-7863-Sci-Stat-Proj-4/Schrick-Noah_Homework-4.R
2023-03-01 13:13:13 -06:00

222 lines
5.5 KiB
R

# Project 4 for the University of Tulsa's CS-7863 Sci-Stat Course
# Higher Order Differential Equations and Shooting Method
# Professor: Dr. McKinney, Spring 2023
# Noah L. Schrick - 1492657
## 1. Transform the second order ODE into a system of two first order ODEs
# use ode45 or rk4sys to solve for the motion of the plane pendulum
if (!require("pracma")) install.packages("pracma")
library(pracma)
tmin <- 0
tmax <- 7
theta0 <- pi/4
omega0 <- 0
y.init <- c(theta0, omega0)
g <- 9.81
L <- 1.0
## Substitution Tricks
# theta_1 = theta_prime
# theta_2 = theta
# theta_1_prime = theta_pp
# theta_2_prime = theta_prime = theta_1
## Equation Replacements
ode_1.f <- function(t, y, k){
theta <- y[1]
omega <- y[2]
g <- k[1]
L <- k[2]
omega_p <- -k[1]/k[2] * sin(theta)
theta_p <- omega
as.matrix(c(theta_p, omega_p))
}
p.params <- c(g, L)
pend.sol <- ode45(f=function(t,y){ode_1.f(t,y,k=p.params)},
y=y.init, t0=tmin, tfinal=tmax)
# a. Plot
plot(pend.sol$t,pend.sol$y[,1],type="l",col="blue",
ylim=c(-2.3,2.3), xlab="time",ylab="amplitude")
par(new=T)
lines(pend.sol$t,pend.sol$y[,2],type="l",col="red")
abline(h=0)
legend("topleft", # coordinates, "topleft" etc
c("angle","omega"), # label
lty=c(1,1), # line
lwd=c(2.5,2.5), # weight
#cex=.8,
bty="n", # no box
col=c("blue","red") # color
)
# b. Overlay a plot of the small-angle approx
plot(pend.sol$t,pend.sol$y[,1],type="l",col="blue",
ylim=c(-2.3,2.3), xlab="time",ylab="amplitude")
par(new=T)
lines(seq(tmin,tmax,len=length(pend.sol$t)),
theta0*cos(sqrt(g/L)*seq(tmin,tmax,len=length(pend.sol$t))),type="l",col="red")
abline(h=0)
legend("topleft", # coordinates, "topleft" etc
c("angle","small angle approx"), # label
lty=c(1,1), # line
lwd=c(2.5,2.5), # weight
#cex=.8,
bty="n", # no box
col=c("blue","red") # color
)
## 2. Use ode45 to solve the damped harmonic oscillator
tmin <- 0
tmax <- 10
yo <- 1
ybaro <- 0
## Substitution Tricks
# y1 = y_prime
# y_2 = y
# y_1_prime = y_pp
# y_2_prime = y_prime = y_1
# Eqs:
# m*y_1_prime + c*y1 + k*y_2 = 0
# y_1_prime = (-c*y_1 - k*y_2)/m
# y_2_prime = y_1
# a
m <- 1
c <- 1
kvar <- 2
dho.f <- function(t, y, kpass){
yn <- y[1]
ydot <- y[2]
# c k m
ypp <- (-kpass[2]*yn - kpass[3]*ydot)/kpass[1]
#ypp <- -kpass[2]*y - kpass[3]*ydot
as.matrix(c(ydot,ypp))
}
y.init <- c(yo, ybaro)
dho.params <- c(m,c,kvar)
dho.sol <- ode45(f=function(t,y){dho.f(t,y,kpass=dho.params)},
y=y.init, t0=tmin, tfinal=tmax)
# plot pos vs time
pos <- (-m*dho.sol$y[,2] - c*dho.sol$y[,1])/kvar
plot(dho.sol$t, pos ,type="o",col="blue",
ylim=c(-1.0,1.0), xlab="time",ylab="amplitude")
par(new=T)
lines(dho.sol$t,dho.sol$y[,1],type="o",col="red")
lines(dho.sol$t,dho.sol$y[,2],type="o",col="green")
legend("topright", # coordinates, "topleft" etc
c("y","yprime", "ydoubleprime"), # label
lty=c(1,1), # line
lwd=c(2.5,2.5), # weight
#cex=.8,
bty="n", # no box
col=c("blue","red", "green") # color
)
# b
m <- 1
c <- 2
k <- 1
dho.params <- c(m,c,k)
y.init <- c(yo, ybaro)
dho.params <- c(m,c,kvar)
dho.sol <- ode45(f=function(t,y){dho.f(t,y,kpass=dho.params)},
y=y.init, t0=tmin, tfinal=tmax)
# plot pos vs time
pos <- (-m*dho.sol$y[,2] - c*dho.sol$y[,1])/kvar
plot(dho.sol$t, pos ,type="o",col="blue",
ylim=c(-1.0,1.0), xlab="time",ylab="amplitude")
par(new=T)
lines(dho.sol$t,dho.sol$y[,1],type="o",col="red")
lines(dho.sol$t,dho.sol$y[,2],type="o",col="green")
legend("topright", # coordinates, "topleft" etc
c("y","yprime", "ydoubleprime"), # label
lty=c(1,1), # line
lwd=c(2.5,2.5), # weight
#cex=.8,
bty="n", # no box
col=c("blue","red", "green") # color
)
## 3. Use ode45/rk4sys to solve for the traj of a projectile thrown vertically
# a. IVP
tmin <- 0
tmax <- 2.04
xo <- 0
vo <- 10
# b. BVP
yo <- 0
ymax <- 0
library(pracma)
projectile.f <- function(t,y){
g <- 9.81
v <- y[2] # y1dot
a <- -g # could be any f, y'' = f(t,y)
matrix(c(v,a))
}
proj.obj <- function(v0, y0=0, tfinal){
# minimize w.r.t. v0
proj.sol <- ode45(projectile.f,
y=c(y0, v0), t0=0, tfinal=tfinal)
final_index <- length(proj.sol$t)
yf <- proj.sol$y[final_index,1] # want equal to right boundary
log(abs(yf)) # minimize this
}
# user specifies tfinal and yfinal for BVP
v_best <- optimize(proj.obj,
interval=c(1,100), #bisect-esque interval
tol=1e-10,
y0=0, tfinal=10) # un-optimized obj params
v_best$minimum # best v0
best.sol <- rk4sys(projectile.f, a=0, b=10, y0=c(0, v_best$minimum),
n=20) # 20 integration stepstmax
# c. Shooting method for damped oscillator with perturbation parameter
yo <- 0
y1 <- 1
ymin <- 0
ymax <- 2
pfirst <- 0.5
psec <- 0.05
# analytical sol
pthird <- 0
## 4. Position of the earth and moon
# a. Plotly
G <- 6.673e-11 # m^3 kg-1 s^-2
M_S <- 1.9891e30 # sun kg
M_E <- 5.98e24 # earth kg
M_m <- 7.32e22 # moon kg
mu_sun <- G*M_S*(86400^2)/1e9 # km^3/days^2
# t0: jan 1, 1999 00:00:00am
x0_earth <- c(-27115219762.4, 132888652547.0, 57651255508.0)/1e3 # km
v0_earth <- c(-29794.2199907, -4924.33333333,-2135.59540741)*(86400)/1e3
# m/s -> km/day
x0_moon <- c(-27083318944, 133232649728, 57770257344)/1e3 # km
v0_moon <- c(-30864.2207031, -4835.03349304, -2042.89546204)*(86400)/1e3
# m/s -> km/day
# b. Find eclipses
# c. keep orbiter at L2 Lagrange point for a year, ignoring the moon's effect