3d Plot of earth, moon, and sun over 1 year

This commit is contained in:
Noah L. Schrick 2023-03-01 15:21:52 -06:00
parent 56908067f7
commit 511ce16679

View File

@ -96,7 +96,6 @@ dho.f <- function(t, y, kpass){
ydot <- y[2]
# c k m
ypp <- (-kpass[2]*yn - kpass[3]*ydot)/kpass[1]
#ypp <- -kpass[2]*y - kpass[3]*ydot
as.matrix(c(ydot,ypp))
}
@ -149,18 +148,11 @@ legend("topright", # coordinates, "topleft" etc
)
## 3. Use ode45/rk4sys to solve for the traj of a projectile thrown vertically
# a. IVP
tmin <- 0
tmax <- 2.04
xo <- 0
vo <- 10
# b. BVP
yo <- 0
ymax <- 0
library(pracma)
projectile.f <- function(t,y){
g <- 9.81
v <- y[2] # y1dot
@ -168,6 +160,29 @@ projectile.f <- function(t,y){
matrix(c(v,a))
}
y.init <- c(xo, vo)
ivp.sol <- ode45(f=function(t,y){projectile.f(t,y)},
y=y.init, t0=tmin, tfinal=tmax)
ivp.sol.rk4 <- rk4sys(projectile.f, 0, 2.04, c(0, 10), 100)
plot(ivp.sol$t, ivp.sol$y[,1] ,type="o",col="blue",
ylim = c(-0.5, 5.5), xlab="time",ylab="height")
par(new=T)
lines(ivp.sol.rk4$x, ivp.sol.rk4$y[,1] ,type="o",col="red",
xlab="time",ylab="height")
legend("topright", # coordinates, "topleft" etc
c("ODE45, default","RK4Sys, 100 steps"), # label
lty=c(1,1), # line
lwd=c(2.5,2.5), # weight
#cex=.8,
bty="n", # no box
col=c("blue","red", "green") # color
)
# b. BVP
yo <- 0
ymax <- 0
proj.obj <- function(v0, y0=0, tfinal){
# minimize w.r.t. v0
proj.sol <- ode45(projectile.f,
@ -186,18 +201,53 @@ v_best$minimum # best v0
best.sol <- rk4sys(projectile.f, a=0, b=10, y0=c(0, v_best$minimum),
n=20) # 20 integration stepstmax
plot(best.sol$x, best.sol$y[,1], type="l")
computeHeights <- function(xo, vo, tmin){
height <- xo + vo*tmin -0.5*9.81*tmin^2
}
height <- computeHeights(best.sol$x, best.sol$y[,1], seq(0,10,len=21))
# c. Shooting method for damped oscillator with perturbation parameter
yo <- 0
y1 <- 1
ymin <- 0
ymax <- 2
tmin <- 0
tfinal <- 2
pfirst <- 0.5
psec <- 0.05
dho.pert.f <- function(t, y, kpass){
yn <- y[1]
ydot <- y[2]
ep <- kpass[1]
# c m
ypp <- (-(1+ep)*yn - ydot)/ep
as.matrix(c(ydot,ypp))
}
proj.obj <- function(v0, y0=yo, tfinal){
# minimize w.r.t. v0
proj.sol <- ode45(dho.pert.f,
y=c(yo, y1), kpass=pfirst, t0=tmin, tfinal=tfinal)
final_index <- length(proj.sol$t)
yf <- proj.sol$y[final_index,1] # want equal to right boundary
log(abs(yf)) # minimize this
}
# user specifies tfinal and yfinal for BVP
ep_best <- optimize(proj.obj,
interval=c(1,100), #bisect-esque interval
tol=1e-10,
y0=0, tfinal=2) # un-optimized obj params
ep_best$minimum # best v0
best.sol <- rk4sys(dho.pert.f, a=0, b=2, y0=c(0, ep_best$minimum),
n=20) # 20 integration stepstmax
# analytical sol
pthird <- 0
# yprime = -y
## 4. Position of the earth and moon
# a. Plotly
@ -216,6 +266,56 @@ x0_moon <- c(-27083318944, 133232649728, 57770257344)/1e3 # km
v0_moon <- c(-30864.2207031, -4835.03349304, -2042.89546204)*(86400)/1e3
# m/s -> km/day
sunearth.f <- function(t,y){
G <- 6.673e-11 # m^3 kg^-1 s^-2
M_S <- 1.9891e30
M_E <- 5.98e24
M_m <- 7.32e22 # not using right now
mu_sun <- G*M_S*(86400^2)/1e9 # km^3/days^2
x_earth <- y[1:3] # xyz position of earth wrt sun
v_earth <- y[4:6] # xyz velocity of earth, also part of ydot
r_earth <- sqrt(sum(x_earth^2)) # distance earth to sun
acc_earth <- -mu_sun*x_earth/r_earth^3 # part of ydot
ydot <- c(v_earth, acc_earth)
return(matrix(ydot))
}
y.init.earth <- c(x0_earth, v0_earth)
sunearth.sol <- rk4sys(f=sunearth.f, a=0, b=365.25, y0=y.init.earth, n=365)
sunearth.df <- data.frame(x=sunearth.sol$y[,1],
y=sunearth.sol$y[,2],
z=sunearth.sol$y[,3])
y.init.moon <- c(x0_moon, v0_moon)
sunmoon.sol <- rk4sys(f=sunearth.f, a=0,b=365.25, y0=y.init.moon, n=365)
sunmoon.df <- data.frame(x=sunmoon.sol$y[,1],
y=sunmoon.sol$y[,2],
z=sunmoon.sol$y[,3])
if (!require("plotly")) install.packages("plotly")
library(plotly)
fig <- plot_ly(sunmoon.df, x = ~x, y = ~y, z = ~z, name="moon", type = "scatter3d", mode="markers")
fig <- fig %>% layout(scene = list(xaxis = list(title = 'x'),
yaxis = list(title = 'y'),
zaxis = list(title = 'z')))
fig <- add_trace(fig, x = 0, y = 0, z=0, mode="markers", color = I("red"), name="sun")
fig <- add_trace(fig, x = sunearth.df[1]$x, y = sunearth.df[2]$y, z = sunearth.df[3]$z, mode="markers", color = I("green"), name="earth")
fig
mean(sqrt(rowSums(cbind(sunearth.sol$y[,1]^2,
sunearth.sol$y[,2]^2,
sunearth.sol$y[,3]^2))))
# 150 million km
mean(sqrt(rowSums(cbind((sunearth.sol$y[,1] - sunmoon.sol$y[,1])^2,
(sunearth.sol$y[,2] - sunmoon.sol$y[,2])^2,
(sunearth.sol$y[,3] - sunmoon.sol$y[,3])^2))))
# Not correct: giving 60m km - should be ~380k
# b. Find eclipses
norm_vec <- function(x) sqrt(rowSums(cbind((x^2))))
eclipses <- norm_vec(sunearth.sol$y) %*% norm_vec(sunmoon.sol$y)
# c. keep orbiter at L2 Lagrange point for a year, ignoring the moon's effect