L2 Lagrange orbiter

This commit is contained in:
Noah L. Schrick 2023-03-01 18:16:14 -06:00
parent dd599c8b66
commit 1dd9439d66

View File

@ -207,7 +207,8 @@ computeHeights <- function(xo, vo, tmin){
height <- xo + vo*tmin -0.5*9.81*tmin^2 height <- xo + vo*tmin -0.5*9.81*tmin^2
} }
height <- computeHeights(best.sol$x, best.sol$y[,1], seq(0,10,len=21)) height <- computeHeights(yo, v_best$minimum, seq(0,10,len=21))
plot(seq(0,10,len=21), height, xlab="time", ylab="height")
# c. Shooting method for damped oscillator with perturbation parameter # c. Shooting method for damped oscillator with perturbation parameter
yo <- 0 yo <- 0
@ -215,38 +216,46 @@ y1 <- 1
tmin <- 0 tmin <- 0
tfinal <- 2 tfinal <- 2
pfirst <- 0.5 dho.pert.encap.f <- function(ep){
psec <- 0.05 dho.pert.f <- function(t, y){
yn <- y[1]
dho.pert.f <- function(t, y, kpass){ ydot <- y[2] - yn
yn <- y[1] #ep <- 0.5
ydot <- y[2] ypp <- (-(1+ep)*yn - ydot)/ep
ep <- kpass[1] as.matrix(c(ydot,ypp))
ypp <- (-(1+ep)*yn - ydot)/ep }
as.matrix(c(ydot,ypp))
proj.obj <- function(v0, y0=yo, tfinal){
# minimize w.r.t. v0
proj.sol <- ode45(dho.pert.f,
y=c(yo, y1), t0=tmin, tfinal=tfinal)
final_index <- length(proj.sol$t)
yf <- proj.sol$y[final_index,1] # want equal to right boundary
log(abs(yf)) # minimize this
}
# user specifies tfinal and yfinal for BVP
ydot_best <- optimize(proj.obj,
interval=c(1,100), #bisect-esque interval
tol=1e-10,
y0=0, tfinal=2) # un-optimized obj params
ydot_best$minimum # best ydot
best.sol <- rk4sys(dho.pert.f, a=0, b=2, y0=c(0, ydot_best$minimum),
n=20) # 20 integration stepstmax
} }
proj.obj <- function(v0, y0=yo, tfinal){ ep <- 0.5
# minimize w.r.t. v0 best.sol <- dho.pert.encap.f(ep)
proj.sol <- ode45(dho.pert.f, plot(best.sol$x, best.sol$y[,1], type="l")
y=c(yo, y1), kpass=pfirst, t0=tmin, tfinal=tfinal)
final_index <- length(proj.sol$t)
yf <- proj.sol$y[final_index,1] # want equal to right boundary
log(abs(yf)) # minimize this
}
# user specifies tfinal and yfinal for BVP ep <- 0.05
ep_best <- optimize(proj.obj, best.sol <- dho.pert.encap.f(ep)
interval=c(1,100), #bisect-esque interval plot(best.sol$x, best.sol$y[,1], type="l")
tol=1e-10,
y0=0, tfinal=2) # un-optimized obj params
ep_best$minimum # best v0
best.sol <- rk4sys(dho.pert.f, a=0, b=2, y0=c(0, ep_best$minimum),
n=20) # 20 integration stepstmax
# analytical sol # analytical sol
# yprime = -y # yprime = -y
# Same as e^x
## 4. Position of the earth and moon ## 4. Position of the earth and moon
# a. Plotly # a. Plotly
@ -311,6 +320,10 @@ mean(sqrt(rowSums(cbind(sunearth.sol$y[,1]^2,
mean(sqrt(rowSums(cbind((sunearth.sol$y[,1] - sunmoon.sol$y[,1])^2, mean(sqrt(rowSums(cbind((sunearth.sol$y[,1] - sunmoon.sol$y[,1])^2,
(sunearth.sol$y[,2] - sunmoon.sol$y[,2])^2, (sunearth.sol$y[,2] - sunmoon.sol$y[,2])^2,
(sunearth.sol$y[,3] - sunmoon.sol$y[,3])^2)))) (sunearth.sol$y[,3] - sunmoon.sol$y[,3])^2))))
mean(sqrt(rowSums(cbind(sunmoon.sol$y[,1]^2,
sunmoon.sol$y[,2]^2,
sunmoon.sol$y[,3]^2))))
# Not correct: giving 60m km - should be ~380k # Not correct: giving 60m km - should be ~380k
# Why: Don't think M_m is used in function # Why: Don't think M_m is used in function
@ -336,15 +349,36 @@ findZeroRelax <- function(g, x.guess, tol=1e-6, maxsteps=1e6){
return(c(x.new, g(x.new), steps)) return(c(x.new, g(x.new), steps))
} }
T <- 365.25
G <- 6.673e-11 # m^3 kg^-1 s^-2
M_S <- 1.9891e30
M_E <- 5.98e24
x_earth <- c(-27115219762.4, 132888652547.0, 57651255508.0)/1e3 # km
r_earth <- sqrt(sum(x_earth^2)) # distance earth to sun
orbiter.f <- function(l) { orbiter.f <- function(l) {
T <- 365.25 tmp1 <- ((T^2)/(4*(pi^2))) * G
G <- 6.673e-11 # m^3 kg^-1 s^-2 tmp2 <- (M_S/((r_earth+l)^2)) + (M_E/(l^2))
M_S <- 1.9891e30 tmp3 <- tmp1*tmp2
M_E <- 5.98e24
x_earth <- c(-27115219762.4, 132888652547.0, 57651255508.0)/1e3 # km
r_earth <- sqrt(sum(x_earth^2)) # distance earth to sun
(T^2)/(4*(pi^2)) * G * (M_S/((r_earth+l)^2) + M_E/(l^2)) - r_earth
} }
orbiter.estimate <- findZeroRelax(orbiter.f, 1000) orbiter.estimate <- findZeroRelax(orbiter.f, 1000000)
l <- orbiter.estimate[1]-r_earth
x0_orbiter_tmp <- c(l, orbiter.f(l), 0)/1e3 # km
x0_orbiter <- x0_orbiter + x0_earth
y.init.orbiter <- c(x0_orbiter, v0_earth)
sunorbit.sol <- rk4sys(f=sunearth.f, a=0, b=365.25, y0=y.init.orbiter, n=365)
sunorbit.df <- data.frame(x=sunorbit.sol$y[,1],
y=sunorbit.sol$y[,2],
z=sunorbit.sol$y[,3])
fig <- plot_ly(sunorbit.df, x = ~x, y = ~y, z = ~z, name="orbiter", type = "scatter3d", mode="markers")
fig <- fig %>% layout(scene = list(xaxis = list(title = 'x'),
yaxis = list(title = 'y'),
zaxis = list(title = 'z')))
fig <- add_trace(fig, x = 0, y = 0, z=0, mode="markers", color = I("red"), name="sun")
fig <- add_trace(fig, x = sunearth.df[1]$x, y = sunearth.df[2]$y, z = sunearth.df[3]$z, mode="markers", color = I("green"), name="earth")
fig