# Project 3 for the University of Tulsa's CS-7863 Sci-Stat Course # Numerical Ordinary Differential Equations # Professor: Dr. McKinney, Spring 2023 # Noah L. Schrick - 1492657 ## 1. Approximate deriv. of sin(x) at x=pi from h=10^-1 -> 10^-20 forward.approx <- function(func, x, h){ approx <- (func(x+h)-func(x))/h } forward.approx.table <- matrix(nrow = 0, ncol = 3) colnames(forward.approx.table) <- c("h", "approximation", "error") for(h in 10^(seq(-1,-20,-1))){ approx <- forward.approx(sin, pi, h) error <- abs(cos(pi)-approx) forward.approx.table <- rbind(forward.approx.table, c(h, approx, error)) } plot(abs(log(forward.approx.table[,"h"],10)), forward.approx.table[,"error"], xlab="h [1e-x]", ylab="error (logscale)", type="o", log="y", main = "Forward Approximation of sin(x) at x=pi") # Repeat with central difference approx central.diff.approx <- function(func, x, h){ approx <- (func(x+h)-func(x-h))/(2*h) } central.diff.table <- matrix(nrow = 0, ncol = 3) colnames(central.diff.table) <- c("h", "approximation", "error") for(h in 10^(seq(-1,-20,-1))){ approx <- central.diff.approx(sin, pi, h) error <- abs(cos(pi)-approx) central.diff.table <- rbind(central.diff.table, c(h, approx, error)) } plot(abs(log(central.diff.table[,"h"],10)), central.diff.table[,"error"], xlab="h [1e-x]", ylab="error (logscale)", type="o", log="y", main = "Central Difference Approximation of sin(x) at x=pi") ## 2. # a) Runge-Kutta my_rk4 <- function(f, y0, t0, tfinal){ n <- (tfinal-t0)/h # Static step size tspan <- seq(t0,tfinal,n) npts <- length(tspan) y<-rep(y0,npts) # initialize, this will be a matrix for systems for (i in seq(2,npts)){ k1 <- f(t[i-1], y[i-1]) k2 <- f(t[i-1] + 0.5 * h, y[i-1] + 0.5 * k1 * h) k3 <- f(t[i-1] + 0.5 * h, y[i-1] + 0.5 * k2 * h) k4 <- f(t[i-1] + h, y[i-1] + k3*h) # Update y y[i] = y[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4) # Update t #t0 = t0 + h } return(list(t=tspan,y=y)) } # b) Numerically solve the decay ode and compare to Euler and RK error decay.f <- function(t,y,k){ # define the ode model # k given value when solver called dydt <- -k*y as.matrix(dydt) } # From class docs: my_euler <- function(f, y0, t0, tfinal, dt){ # follow ode45 syntax, dt is extra # y0 is initial condition tspan <- seq(t0,tfinal,dt) npts <- length(tspan) y<-rep(y0,npts) # initialize, this will be a matrix for systems for (i in 2:npts){ dy <- f(t[i-1],y[i-1])*dt # t is not used in this case y[i] <- y[i-1] + dy } return(list(t=tspan,y=y)) } # Solve t0 <- 0 tfinal <- 100 h <- 10 k <- 0.03 y0 <- 100 decay.euler.sol <- my_euler(f=function(t,y){decay.f(t,y,k=k)}, y0, t0, tfinal, dt=h) plot(decay.euler.sol$t,decay.euler.sol$y, xlab="t", ylab="y", main="Euler Numerical Solution for the decay ode dy/dt=-ky") par(new=T) lines(seq(t0,tfinal,len=50), y0*exp(-k*seq(t0,tfinal,len=50)), col="red") decay.rk4.sol <- my_rk4(f=function(t,y){decay.f(t,y,k=k)}, y0, t0, tfinal) plot(decay.rk4.sol$t,decay.rk4.sol$y, xlab="t", ylab="y", main="RK4 Numerical Solution for the decay ode dy/dt=-ky") par(new=T) lines(seq(t0,tfinal,len=50), y0*exp(-k*seq(t0,tfinal,len=50)), col="red") ## 3. Use library function ode45 to solve the decay numerically if (!require("pracma")) install.packages("pracma") library(pracma) # specify intial conds and params k <- 1.21e-4 tmin <- 0 tmax <- 10000 y.init <- 10000 decay.ode45.sol <- ode45(f=function(t,y){decay.f(t,y,k=k)}, y=y.init, t0=tmin, tfinal=tmax) plot(decay.ode45.sol$t,decay.ode45.sol$y) par(new=T) lines(seq(tmin,tmax,len=50), y.init*exp(-k*seq(tmin,tmax,len=50))) ## 4. Solve the predator-prey model numerically # a) k1=0.01, k2=0.1, k3=0.001, k4=0.05, prey(0)=50, pred(0)=15. t=0 -> 200 # plot # b) Use Euler and RK to solve with h=10 # plot comparing Prey solutions to ode45 # c) Use k3=0.02 ## 5. Solve SIR model numerically from t=0 -> 20 # a) a=0.5, b=1, S(0)=0.9, I(0)=0.1, R(0)=0 # plot # b) a=3 ## 6. Decomp of dinitrogen pentoxygen into nitrogen dioxide and molecular oxygen # a) k1=1.0, k2=0.5, k3=0.2,k4=1.5, [N2O5]o=1, all other IC's=0, t=0 -> 10 # b) Increase k4 to make the intermediate species -> 0