SIR Model
This commit is contained in:
parent
aaddbc2ba9
commit
f68c9b10fb
@ -233,9 +233,9 @@ my_euler2 <- function(f, y0, t0, tfinal, dt){
|
||||
for (i in 2:npts){ # rows are time
|
||||
for (j in 1:nvars){
|
||||
y_vec_prev <- y[i-1,] # both y values at previous time point
|
||||
dy <- f(t[i-1],y_vec_prev)*dt # f returns a vector, t not used
|
||||
y[i,] <- y_vec_prev + dy
|
||||
}
|
||||
dy <- f(t[i-1],y_vec_prev)*dt # f returns a vector, t not used
|
||||
y[i,] <- y_vec_prev + dy
|
||||
}
|
||||
return(list(t=tspan,y=y))
|
||||
}
|
||||
@ -250,12 +250,14 @@ my_rk4_2 <- function(f, y0, t0, tfinal, h){
|
||||
for (i in 2:npts){ # rows are time
|
||||
for (j in 1:nvars){
|
||||
y_vec_prev <- y[i-1,] # both y values at previous time point
|
||||
|
||||
k1 <- f(t[i-1], y_vec_prev[i-1])
|
||||
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k1 * h)
|
||||
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k2 * h)
|
||||
k4 <- f(t[i-1] + h, y_vec_prev[i-1] + k3*h)
|
||||
|
||||
y[i,] <- y_vec_prev[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
|
||||
}
|
||||
k1 <- f(t[i-1], y_vec_prev[i-1])
|
||||
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k1 * h)
|
||||
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k2 * h)
|
||||
k4 <- f(t[i-1] + h, y_vec_prev[i-1] + k3*h)
|
||||
y[i,] <- y_vec_prev[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
|
||||
}
|
||||
return(list(t=tspan,y=y))
|
||||
}
|
||||
@ -263,7 +265,6 @@ my_rk4_2 <- function(f, y0, t0, tfinal, h){
|
||||
pp.euler.sol <- my_euler2(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
y = c(prey0, pred0),
|
||||
t0 = tmin, tfinal = tmax, dt=h)
|
||||
|
||||
plot.pred.prey(pp.euler.sol, "Euler")
|
||||
|
||||
pp.rk4.sol <- my_rk4_2(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
@ -282,12 +283,50 @@ pp.sol.c <- ode45(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
plot.pred.prey(pp.sol.c, "ODE45 with k3=0.02")
|
||||
|
||||
## 5. Solve SIR model numerically from t=0 -> 20
|
||||
sir.f <- function(t, y, k) {
|
||||
dS <- -k[1] * y[1] * y[2]
|
||||
dI <- k[1] * y[1] * y[2] - k[2] * y[2]
|
||||
dR <- k[2] * y[2]
|
||||
return(as.matrix(c(dS, dI, dR)))
|
||||
}
|
||||
|
||||
# a) a=0.5, b=1, S(0)=0.9, I(0)=0.1, R(0)=0
|
||||
sir.params <- c(0.5, 1)
|
||||
S0 <- 0.9
|
||||
I0 <- 0.1
|
||||
R0 <- 0.0
|
||||
tmin <- 0
|
||||
tmax <- 20
|
||||
|
||||
sir.ode.sol <- ode45(f = function(t,y){sir.f(t,y,k=sir.params)},
|
||||
y = c(S0, I0, R0),
|
||||
t0 = tmin, tfinal = tmax)
|
||||
|
||||
# plot
|
||||
plot.sir <- function(sol, method){
|
||||
# - pred/prey columns melted to 1 column called "value"
|
||||
sol.melted <- melt(data.frame(time=sol$t,
|
||||
S=sol$y[,1],
|
||||
I=sol$y[,2]),
|
||||
id = "time") # melt based on time
|
||||
# New column created with variable names, called “variable”
|
||||
colnames(sol.melted)[2] <- "Group" # used in legend
|
||||
|
||||
g <- ggplot(data = sol.melted,
|
||||
aes(x = time, y = value, color = Group))
|
||||
g <- g + geom_point(size=2)
|
||||
g <- g + xlab("time") + ylab("Population")
|
||||
g <- g + ggtitle(paste("SIR Model Using", method))
|
||||
show(g)
|
||||
}
|
||||
|
||||
plot.sir(sir.ode.sol, "ODE45")
|
||||
# b) a=3
|
||||
sir.params.b <- c(3, 1)
|
||||
sir.ode.sol.b <- ode45(f = function(t,y){sir.f(t,y,k=sir.params.b)},
|
||||
y = c(S0, I0, R0),
|
||||
t0 = tmin, tfinal = tmax)
|
||||
plot.sir(sir.ode.sol.b, "ODE45 with a=3")
|
||||
|
||||
## 6. Decomp of dinitrogen pentoxygen into nitrogen dioxide and molecular oxygen
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user