First version of predator-prey model
This commit is contained in:
parent
87c0509581
commit
aaddbc2ba9
@ -39,7 +39,7 @@ plot(abs(log(central.diff.table[,"h"],10)), central.diff.table[,"error"],
|
||||
|
||||
## 2.
|
||||
# a) 4th-order Runge-Kutta
|
||||
my_rk4 <- function(f, y0, t0, tfinal){
|
||||
my_rk4 <- function(f, y0, t0, tfinal, h){
|
||||
n <- (tfinal-t0)/h # Static step size
|
||||
|
||||
tspan <- seq(t0,tfinal,n)
|
||||
@ -113,7 +113,7 @@ plot(seq(t0+h,tfinal,len=11), euler.log.err,
|
||||
|
||||
# Repeat with RK4
|
||||
decay.rk4.sol <- my_rk4(f=function(t,y){decay.f(t,y,k=k)},
|
||||
y0, t0, tfinal)
|
||||
y0, t0, tfinal, h)
|
||||
plot(decay.rk4.sol$t,decay.rk4.sol$y, xlab="t", ylab="y",
|
||||
main="RK4 Numerical Solution for the decay ode dy/dt=-ky")
|
||||
par(new=T)
|
||||
@ -171,16 +171,115 @@ halflife <- findZeroBisect(fun.hl, 5000, 6500, 1e-8)[1]
|
||||
abline(v=halflife, lty="dotted", lwd=2, col="blue")
|
||||
|
||||
## 4. Solve the predator-prey model numerically
|
||||
# pred-prey ode system with ode45
|
||||
pp.f <- function(t,y,k){
|
||||
# k is a vector of model params
|
||||
# y is a vector of length equal to the number of odes
|
||||
prey <- y[1]
|
||||
pred <- y[2]
|
||||
dPrey <- -k[1]*prey*pred + k[2]*prey
|
||||
dPred <- k[3]*prey*pred - k[4]*pred
|
||||
return(as.matrix(c(dPrey, dPred)))
|
||||
}
|
||||
|
||||
# a) k1=0.01, k2=0.1, k3=0.001, k4=0.05, prey(0)=50, pred(0)=15. t=0 -> 200
|
||||
tmin <- 0; tmax<-200;
|
||||
pp.params <- c(.01, .1, .001, .05)
|
||||
prey0 <- 50
|
||||
pred0 <- 15
|
||||
|
||||
pp.sol <- ode45(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
y = c(prey0, pred0),
|
||||
t0 = tmin, tfinal = tmax)
|
||||
|
||||
# plot
|
||||
if (!require("reshape")) install.packages("reshape")
|
||||
library(reshape)
|
||||
if (!require("ggplot2")) install.packages("ggplot2")
|
||||
library(ggplot2)
|
||||
|
||||
plot.pred.prey <- function(sol, method){
|
||||
# - pred/prey columns melted to 1 column called "value"
|
||||
sol.melted <- melt(data.frame(time=sol$t,
|
||||
Prey=sol$y[,1],
|
||||
Pred=sol$y[,2]),
|
||||
id = "time") # melt based on time
|
||||
# New column created with variable names, called “variable”
|
||||
colnames(sol.melted)[2] <- "Group" # used in legend
|
||||
|
||||
g <- ggplot(data = sol.melted,
|
||||
aes(x = time, y = value, color = Group))
|
||||
g <- g + geom_point(size=2)
|
||||
g <- g + xlab("time") + ylab("Population")
|
||||
g <- g + ggtitle(paste("Predator-Prey Model Using", method))
|
||||
show(g)
|
||||
}
|
||||
|
||||
plot.pred.prey(pp.sol, "ODE45")
|
||||
|
||||
# b) Use Euler and RK to solve with h=10
|
||||
h <- 10
|
||||
|
||||
my_euler2 <- function(f, y0, t0, tfinal, dt){
|
||||
# follow ode45 syntax, dt is extra
|
||||
# y0 is a vector of initial conditions
|
||||
# this y determines the number of dependent variables to solve for
|
||||
tspan <- seq(t0,tfinal,dt)
|
||||
npts <- length(tspan)
|
||||
nvars <- length(y0)
|
||||
# intialize, this will be a matrix for systems
|
||||
y <- matrix(0,nrow=npts, ncol=nvars)
|
||||
y[1,] <- y0
|
||||
for (i in 2:npts){ # rows are time
|
||||
for (j in 1:nvars){
|
||||
y_vec_prev <- y[i-1,] # both y values at previous time point
|
||||
}
|
||||
dy <- f(t[i-1],y_vec_prev)*dt # f returns a vector, t not used
|
||||
y[i,] <- y_vec_prev + dy
|
||||
}
|
||||
return(list(t=tspan,y=y))
|
||||
}
|
||||
|
||||
my_rk4_2 <- function(f, y0, t0, tfinal, h){
|
||||
tspan <- seq(t0,tfinal,h)
|
||||
npts <- length(tspan)
|
||||
nvars <- length(y0)
|
||||
# intialize, this will be a matrix for systems
|
||||
y <- matrix(0,nrow=npts, ncol=nvars)
|
||||
y[1,] <- y0
|
||||
for (i in 2:npts){ # rows are time
|
||||
for (j in 1:nvars){
|
||||
y_vec_prev <- y[i-1,] # both y values at previous time point
|
||||
}
|
||||
k1 <- f(t[i-1], y_vec_prev[i-1])
|
||||
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k1 * h)
|
||||
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k2 * h)
|
||||
k4 <- f(t[i-1] + h, y_vec_prev[i-1] + k3*h)
|
||||
y[i,] <- y_vec_prev[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
|
||||
}
|
||||
return(list(t=tspan,y=y))
|
||||
}
|
||||
|
||||
pp.euler.sol <- my_euler2(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
y = c(prey0, pred0),
|
||||
t0 = tmin, tfinal = tmax, dt=h)
|
||||
|
||||
plot.pred.prey(pp.euler.sol, "Euler")
|
||||
|
||||
pp.rk4.sol <- my_rk4_2(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
y = c(prey0, pred0),
|
||||
t0 = tmin, tfinal = tmax, h)
|
||||
plot.pred.prey(pp.rk4.sol, "RK4")
|
||||
|
||||
|
||||
# plot comparing Prey solutions to ode45
|
||||
|
||||
# c) Use k3=0.02
|
||||
pp.params.c <- c(.01, .1, .02, .05)
|
||||
pp.sol.c <- ode45(f = function(t,y){pp.f(t,y,k=pp.params)},
|
||||
y = c(prey0, pred0),
|
||||
t0 = tmin, tfinal = tmax)
|
||||
plot.pred.prey(pp.sol.c, "ODE45 with k3=0.02")
|
||||
|
||||
## 5. Solve SIR model numerically from t=0 -> 20
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user