First version of predator-prey model

This commit is contained in:
Noah L. Schrick 2023-02-15 17:50:38 -06:00
parent 87c0509581
commit aaddbc2ba9

View File

@ -39,7 +39,7 @@ plot(abs(log(central.diff.table[,"h"],10)), central.diff.table[,"error"],
## 2.
# a) 4th-order Runge-Kutta
my_rk4 <- function(f, y0, t0, tfinal){
my_rk4 <- function(f, y0, t0, tfinal, h){
n <- (tfinal-t0)/h # Static step size
tspan <- seq(t0,tfinal,n)
@ -113,7 +113,7 @@ plot(seq(t0+h,tfinal,len=11), euler.log.err,
# Repeat with RK4
decay.rk4.sol <- my_rk4(f=function(t,y){decay.f(t,y,k=k)},
y0, t0, tfinal)
y0, t0, tfinal, h)
plot(decay.rk4.sol$t,decay.rk4.sol$y, xlab="t", ylab="y",
main="RK4 Numerical Solution for the decay ode dy/dt=-ky")
par(new=T)
@ -171,16 +171,115 @@ halflife <- findZeroBisect(fun.hl, 5000, 6500, 1e-8)[1]
abline(v=halflife, lty="dotted", lwd=2, col="blue")
## 4. Solve the predator-prey model numerically
# pred-prey ode system with ode45
pp.f <- function(t,y,k){
# k is a vector of model params
# y is a vector of length equal to the number of odes
prey <- y[1]
pred <- y[2]
dPrey <- -k[1]*prey*pred + k[2]*prey
dPred <- k[3]*prey*pred - k[4]*pred
return(as.matrix(c(dPrey, dPred)))
}
# a) k1=0.01, k2=0.1, k3=0.001, k4=0.05, prey(0)=50, pred(0)=15. t=0 -> 200
tmin <- 0; tmax<-200;
pp.params <- c(.01, .1, .001, .05)
prey0 <- 50
pred0 <- 15
pp.sol <- ode45(f = function(t,y){pp.f(t,y,k=pp.params)},
y = c(prey0, pred0),
t0 = tmin, tfinal = tmax)
# plot
if (!require("reshape")) install.packages("reshape")
library(reshape)
if (!require("ggplot2")) install.packages("ggplot2")
library(ggplot2)
plot.pred.prey <- function(sol, method){
# - pred/prey columns melted to 1 column called "value"
sol.melted <- melt(data.frame(time=sol$t,
Prey=sol$y[,1],
Pred=sol$y[,2]),
id = "time") # melt based on time
# New column created with variable names, called “variable”
colnames(sol.melted)[2] <- "Group" # used in legend
g <- ggplot(data = sol.melted,
aes(x = time, y = value, color = Group))
g <- g + geom_point(size=2)
g <- g + xlab("time") + ylab("Population")
g <- g + ggtitle(paste("Predator-Prey Model Using", method))
show(g)
}
plot.pred.prey(pp.sol, "ODE45")
# b) Use Euler and RK to solve with h=10
h <- 10
my_euler2 <- function(f, y0, t0, tfinal, dt){
# follow ode45 syntax, dt is extra
# y0 is a vector of initial conditions
# this y determines the number of dependent variables to solve for
tspan <- seq(t0,tfinal,dt)
npts <- length(tspan)
nvars <- length(y0)
# intialize, this will be a matrix for systems
y <- matrix(0,nrow=npts, ncol=nvars)
y[1,] <- y0
for (i in 2:npts){ # rows are time
for (j in 1:nvars){
y_vec_prev <- y[i-1,] # both y values at previous time point
}
dy <- f(t[i-1],y_vec_prev)*dt # f returns a vector, t not used
y[i,] <- y_vec_prev + dy
}
return(list(t=tspan,y=y))
}
my_rk4_2 <- function(f, y0, t0, tfinal, h){
tspan <- seq(t0,tfinal,h)
npts <- length(tspan)
nvars <- length(y0)
# intialize, this will be a matrix for systems
y <- matrix(0,nrow=npts, ncol=nvars)
y[1,] <- y0
for (i in 2:npts){ # rows are time
for (j in 1:nvars){
y_vec_prev <- y[i-1,] # both y values at previous time point
}
k1 <- f(t[i-1], y_vec_prev[i-1])
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k1 * h)
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k2 * h)
k4 <- f(t[i-1] + h, y_vec_prev[i-1] + k3*h)
y[i,] <- y_vec_prev[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
}
return(list(t=tspan,y=y))
}
pp.euler.sol <- my_euler2(f = function(t,y){pp.f(t,y,k=pp.params)},
y = c(prey0, pred0),
t0 = tmin, tfinal = tmax, dt=h)
plot.pred.prey(pp.euler.sol, "Euler")
pp.rk4.sol <- my_rk4_2(f = function(t,y){pp.f(t,y,k=pp.params)},
y = c(prey0, pred0),
t0 = tmin, tfinal = tmax, h)
plot.pred.prey(pp.rk4.sol, "RK4")
# plot comparing Prey solutions to ode45
# c) Use k3=0.02
pp.params.c <- c(.01, .1, .02, .05)
pp.sol.c <- ode45(f = function(t,y){pp.f(t,y,k=pp.params)},
y = c(prey0, pred0),
t0 = tmin, tfinal = tmax)
plot.pred.prey(pp.sol.c, "ODE45 with k3=0.02")
## 5. Solve SIR model numerically from t=0 -> 20