Final edits

This commit is contained in:
Noah L. Schrick 2023-02-15 22:45:05 -06:00
parent 7b48a4a5e2
commit 21c4dfe69c

View File

@ -40,9 +40,7 @@ plot(abs(log(central.diff.table[,"h"],10)), central.diff.table[,"error"],
## 2.
# a) 4th-order Runge-Kutta
my_rk4 <- function(f, y0, t0, tfinal, h){
n <- (tfinal-t0)/h # Static step size
tspan <- seq(t0,tfinal,n)
tspan <- seq(t0,tfinal,h)
npts <- length(tspan)
y<-rep(y0,npts) # initialize, this will be a matrix for systems
@ -141,7 +139,7 @@ y.init <- 10000
decay.ode45.sol <- ode45(f=function(t,y){decay.f(t,y,k=k)},
y=y.init, t0=tmin, tfinal=tmax)
plot(decay.ode45.sol$t,decay.ode45.sol$y, xlab="t", ylab="y",
main="Numerical Decay Model Solution Using Pracma ODE45")
main="Decay Model Solution Using Pracma ODE45")
par(new=T)
lines(seq(tmin,tmax,len=50),
y.init*exp(-k*seq(tmin,tmax,len=50)), col="red")
@ -218,7 +216,7 @@ plot.pred.prey <- function(sol, method){
plot.pred.prey(pp.sol, "ODE45")
# b) Use Euler and RK to solve with h=10
h <- 10
h <- 1
my_euler2 <- function(f, y0, t0, tfinal, dt){
# follow ode45 syntax, dt is extra
@ -230,14 +228,12 @@ my_euler2 <- function(f, y0, t0, tfinal, dt){
# intialize, this will be a matrix for systems
y <- matrix(0,nrow=npts, ncol=nvars)
y[1,] <- y0
for (i in 2:npts){ # rows are time
for (j in 1:nvars){
y_vec_prev <- y[i-1,] # both y values at previous time point
dy <- f(t[i-1],y_vec_prev)*dt # f returns a vector, t not used
y[i,] <- y_vec_prev + dy
}
for (i in seq(2,npts)){
y_prev <- y[i-1,] # vector at previous time
dy <- f(t[i-1],y_prev)*dt # also a vector/matrix
y[i,] <- y_prev + dy # Euler update
}
return(list(t=tspan,y=y))
return(list(t=tspan, y=y))
}
my_rk4_2 <- function(f, y0, t0, tfinal, h){
@ -247,17 +243,15 @@ my_rk4_2 <- function(f, y0, t0, tfinal, h){
# intialize, this will be a matrix for systems
y <- matrix(0,nrow=npts, ncol=nvars)
y[1,] <- y0
for (i in 2:npts){ # rows are time
for (j in 1:nvars){
y_vec_prev <- y[i-1,] # both y values at previous time point
for (i in seq(2,npts)){
y_vec_prev <- y[i-1,] # both y values at previous time point
k1 <- f(t[i-1], y_vec_prev)
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev + 0.5 * k1 * h)
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev + 0.5 * k2 * h)
k4 <- f(t[i-1] + h, y_vec_prev + k3*h)
k1 <- f(t[i-1], y_vec_prev[i-1])
k2 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k1 * h)
k3 <- f(t[i-1] + 0.5 * h, y_vec_prev[i-1] + 0.5 * k2 * h)
k4 <- f(t[i-1] + h, y_vec_prev[i-1] + k3*h)
y[i,] <- y_vec_prev[i-1] + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
}
y[i,] <- y_vec_prev + (h/6)*(k1 + 2*k2 + 2*k3 + k4)
}
return(list(t=tspan,y=y))
}
@ -274,6 +268,10 @@ plot.pred.prey(pp.rk4.sol, "RK4")
# plot comparing Prey solutions to ode45
plot(pp.sol$t, pp.sol$y[,1], type="l", col="blue")
par(new=T)
lines(pp.euler.sol$t,pp.euler.sol$y[,1], col="red")
# c) Use k3=0.02
pp.params.c <- c(.01, .1, .02, .05)
@ -307,7 +305,8 @@ plot.sir <- function(sol, method){
# - pred/prey columns melted to 1 column called "value"
sol.melted <- melt(data.frame(time=sol$t,
S=sol$y[,1],
I=sol$y[,2]),
I=sol$y[,2],
R=sol$y[,3]),
id = "time") # melt based on time
# New column created with variable names, called “variable”
colnames(sol.melted)[2] <- "Group" # used in legend
@ -341,7 +340,7 @@ decomp.f <- function(t, y, k) {
# a) k1=1.0, k2=0.5, k3=0.2,k4=1.5, [N2O5]o=1, all other IC's=0, t=0 -> 10
decomp.params <- c(1.0, 0.5, 0.2, 1.5)
A0 <- 1
B0 <- 0; C0 <- 0; D0 <- 0; E0 <- 0
B0 <- 0; C0 <- 0; D0 <- 0; E0 <- 0;
tmin <- 0
tmax <- 10
@ -373,10 +372,17 @@ plot.decomp <- function(sol, method){
plot.decomp(decomp.ode.sol, "ODE45")
# b) Increase k4 to make the intermediate species -> 0
k4 <- 10
decomp.params.b <- c(1.0, 0.5, 0.2, k4)
decomp.ode.sol.b <- ode45(f = function(t,y){decomp.f(t,y,k=decomp.params.b)},
k4.mono.table <- matrix(nrow = 0, ncol = 2)
for(k in 10^(seq(-1, 4, 1))){
k4 <- k
decomp.params.b <- c(1.0, 0.5, 0.2, k4)
decomp.ode.sol.b <- ode45(f = function(t,y){decomp.f(t,y,k=decomp.params.b)},
y = c(A0, B0, C0, D0, E0),
t0 = tmin, tfinal = 100)
plot.decomp(decomp.ode.sol.b, paste("ODE45 Using k4 =", k4))
decomp.ode.sol.b$y[,5]
t0 = tmin, tfinal = tmax)
#plot.decomp(decomp.ode.sol.b, paste("ODE45 Using k4 =", k4))
# Is NO monotonically increasing?
mono.check <- all(decomp.ode.sol.b$y[,5] == cummax(decomp.ode.sol.b$y[,5]))
k4.mono.table <- rbind(k4.mono.table, c(k4, mono.check))
}
k4.mono.table