CS-7863-Sci-Stat-Proj-2/Schrick-Noah_Project-2.R
2023-05-01 00:33:12 -05:00

248 lines
8.2 KiB
R

# Project 2 for the University of Tulsa's CS-7863 Sci-Stat Course
# Roots and Zeros of Functions
# Professor: Dr. McKinney, Spring 2023
# Noah L. Schrick - 1492657
## Part 1: Bisection
findZeroBisect <- function(func, xl, xr, tol, maxsteps=1e6){
steps <- 0
if (func(xl) * func(xr) >= 0){
stop("Bad interval: try again with different endpoints")
}
repeat{
xm <- (xl + xr)/2
if(abs(func(xm)) < tol || steps >= maxsteps){
break
}
ifelse(func(xl) * func(xm) > 0, xl<-xm, xr<-xm)
steps <- steps + 1
}
return(c(xm, func(xm), steps))
}
# Solve 1a
fun.a <- function(x) {x^2-2}
fun.a.string <- "x^2-2=0"
sqrt2.estimate <- findZeroBisect(fun.a,1,2,1e-6)
# Plot 1a
if (!require("ggplot2")) install.packages("ggplot2")
library(ggplot2)
ggplot(data.frame(x=seq(1,2,.1)), aes(x)) +
stat_function(fun=fun.a, aes(col=fun.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=sqrt2.estimate[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
# Solve 1b
fun.b <- function(x) {-3+x+2*exp(-x)}
fun.b.string <- "-3+x+2*exp(-x)=0"
fun.b.estimate.left <- findZeroBisect(fun.b,-2.5,0,1e-6)
fun.b.estimate.right <- findZeroBisect(fun.b,1,4,1e-6)
# Plot 1b
ggplot(data.frame(x=seq(-2.5,5,.1)), aes(x)) +
stat_function(fun=fun.b, aes(col=fun.b.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.b.estimate.left[1],
col = "first bisection estimate"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.b.estimate.right[1],
col = "second bisection estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
# Solve 1c
fun.c <- function(x) {x^3-sin(x)^2}
fun.c.string <- "x^3-sin(x)^2=0"
fun.c.estimate <- findZeroBisect(fun.c,0.5,1,1e-6)
# Plot 1c
ggplot(data.frame(x=seq(0.5,1,.1)), aes(x)) +
stat_function(fun=fun.c, aes(col=fun.c.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.c.estimate[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
## Part 2: Relaxation Method
findZeroRelax <- function(g, x.guess, tol=1e-6, maxsteps=1e6){
steps <- 0
x.old <- x.guess
isConverged <- FALSE
while (!isConverged){
x.new <- g(x.old)
if(steps >= maxsteps || (abs(x.new-x.old)<tol)){
isConverged <- TRUE
}
else{
x.old <- x.new
}
steps <- steps + 1
}
return(c(x.new, g(x.new), steps))
}
# Solve 2b
fun.2b <- function(x) {2-exp(-x)}
fun.2b.fx <- function(x) {x-2+exp(-x)}
fun.2b.string <- "x-2+exp(-x)"
fun.2b.estimate <- findZeroRelax(fun.2b,0)
# Find the other root with bisection
fun.2b.bisect <- findZeroBisect(fun.2b,-2,0,1e-6)
# Plot 2b
ggplot(data.frame(x=seq(-2.5,2.5,.1)), aes(x)) +
stat_function(fun=fun.2b.fx, aes(col=fun.2b.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.2b.estimate[1],
col = "relaxation estimate"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.2b.bisect[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
# Solve 2c
fun.2c <- function(x) {3-2*exp(-x)}
fun.2c.fx <- function(x) {x+2*exp(-x)-3}
fun.2c.string <- "x+2*exp(-x)-3"
fun.2c.estimate <- findZeroRelax(fun.2c,-.5)
# Find the other root with bisection
fun.2c.bisect <- findZeroBisect(fun.2c,-1,0,1e-6)
# Plot 2c
ggplot(data.frame(x=seq(-1,4,.1)), aes(x)) +
stat_function(fun=fun.2c.fx, aes(col=fun.2c.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.2c.estimate[1],
col = "relaxation estimate"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.2c.bisect[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
## Part 3: Optical Pyrometry
fun.3a.fx <- function(x) {5*exp(-x)+x-5}
fun.3a <- function(x) {5-5*exp(-x)}
fun.3a.string <- "5*exp(-x)+x-5"
fun.3a.estimate <- findZeroRelax(fun.3a,4)
# Plot
ggplot(data.frame(x=seq(-1,6,.1)), aes(x)) +
stat_function(fun=fun.3a.fx, aes(col=fun.3a.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.3a.estimate[1],
col = "relaxation estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
# Solve 3b
peak.wavelength <- (1239.84)/((8.61733e-5)*(fun.3a.estimate[1])*(5778))
# Green
# 3c
# define I_Planck function
I_Planck <- function(wavelength, temp){
intensity = ((8*pi*1.23984e3)/(wavelength^5))/(exp(1.23984e3/(wavelength*temp*8.61733e-5))-1)
return(intensity)
}
lam.vec <- seq(100,2000,len=70)
plot(lam.vec, I_Planck(lam.vec,5778), type = "l", lty = 1,
xlab="wavelength (nm)", ylab="Energy Density",
main="Wavelength peaks for different T (K)")
grid(NULL,NULL)
## Part 4: Colebrook-White
# Solve
implicitFF <- function(Re,ed,x.guess,tol=1e-6){
if (Re<2000){
f0 <- 16/Re
} else {
fun.4 <- function(x) {(-16*log10((ed/3.7)+(1.255/(Re*sqrt(x)))))^-2}
fun.4.string <- "(-16*log10((ed/3.7)+(1.255/(Re*sqrt(x)))))^-2"
fun.4.estimate <- findZeroRelax(fun.4,x.guess)
f0 <- fun.4.estimate[1]
}
# Plot
func.plot <- ggplot(data.frame(x=seq(0,2,.1)), aes(x)) +
stat_function(fun=fun.4, aes(col=fun.4.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=fun.4.estimate[1],
col = "relaxation estimate"), show.legend=TRUE)+
ggtitle("Zero Function") +
xlab("x") + ylab("Zero Function") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
print(func.plot)
return(f0)
}
# 4a
fa.estimate <- implicitFF(7000, 0.0001, 0.1)
# 4b
fb.estimate <- implicitFF(8000, 0.0001, 0)
# 4c
fc.estimate <- implicitFF(9000, 0.0001, 0)
## Part 5: Bose-Einstein condensation in variable dimensionality
# a:
g <- 10000
d <- 2
l <- 0
func.five <- function(u){
(-10000/(2*pi)) +
(u/2) *
sqrt((u^2)-((d+2*l)^2)/4) +
(((d+2*l)^2)/16) *
log((u-sqrt((u^2)-((d+2*l)^2)/4))/(u+sqrt((u^2)-((d+2*l)^2)/4)))
}
func.five.string <- "function"
func.five.estimate <- findZeroBisect(func.five,50,75,1e-6)
# Plot
ggplot(data.frame(x=seq(1,80,.1)), aes(x)) +
stat_function(fun=func.five, aes(col=func.five.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=func.five.estimate[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("zeroth-order dimensional
perturbation theory approximation
for the chemical potential of the
Gross-Pitaevskii equation in d dimensions") +
xlab("x") + ylab("y") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))
# b:
g <- 10000
d <- 2
l <- 1
func.five <- function(u){
(-10000/(2*pi)) +
(u/2) *
sqrt((u^2)-((d+2*l)^2)/4) +
(((d+2*l)^2)/16) *
log((u-sqrt((u^2)-((d+2*l)^2)/4))/(u+sqrt((u^2)-((d+2*l)^2)/4)))
}
func.five.string <- "function"
func.five.estimate <- findZeroBisect(func.five,50,75,1e-6)
# Plot
ggplot(data.frame(x=seq(5,80,.1)), aes(x)) +
stat_function(fun=func.five, aes(col=func.five.string)) +
geom_hline(aes(yintercept=0, col = "y=0"), show.legend=TRUE)+
geom_vline(aes(xintercept=func.five.estimate[1],
col = "bisection estimate"), show.legend=TRUE)+
ggtitle("zeroth-order dimensional
perturbation theory approximation
for the chemical potential of the
Gross-Pitaevskii equation in d dimensions") +
xlab("x") + ylab("y") +
theme(text = element_text(size=20), plot.title = element_text(hjust = 0.5))