forked from noah/Network-Theory_Subgraph-Centrality
Upload
This commit is contained in:
commit
1090d991fd
7
.Rproj.user/C3768FE8/sources/prop/79E7A040
Normal file
7
.Rproj.user/C3768FE8/sources/prop/79E7A040
Normal file
@ -0,0 +1,7 @@
|
||||
{
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "48,0",
|
||||
"scrollLine": "36"
|
||||
}
|
||||
7
.Rproj.user/C3768FE8/sources/prop/8FED07D0
Normal file
7
.Rproj.user/C3768FE8/sources/prop/8FED07D0
Normal file
@ -0,0 +1,7 @@
|
||||
{
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "35,4",
|
||||
"scrollLine": "34"
|
||||
}
|
||||
7
.Rproj.user/C3768FE8/sources/prop/A5F06F40
Normal file
7
.Rproj.user/C3768FE8/sources/prop/A5F06F40
Normal file
@ -0,0 +1,7 @@
|
||||
{
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "240,0",
|
||||
"scrollLine": "226"
|
||||
}
|
||||
3
.Rproj.user/C3768FE8/sources/prop/INDEX
Normal file
3
.Rproj.user/C3768FE8/sources/prop/INDEX
Normal file
@ -0,0 +1,3 @@
|
||||
~%2FDocuments%2FSchool%2FCS-7863_Network-Theory%2FR_Projects%2FHomework%2F2%2FSchrick-Noah_CS-7863_Homework-2.R="A5F06F40"
|
||||
~%2FDocuments%2FSchool%2FCS-7863_Network-Theory%2FR_Projects%2FHomework%2F2%2Fkatz_centrality.R="79E7A040"
|
||||
~%2FDocuments%2FSchool%2FCS-7863_Network-Theory%2FR_Projects%2FHomework%2F2%2Fself_estrada.R="8FED07D0"
|
||||
34
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/082578C8
Normal file
34
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/082578C8
Normal file
@ -0,0 +1,34 @@
|
||||
{
|
||||
"id": "082578C8",
|
||||
"path": null,
|
||||
"project_path": null,
|
||||
"type": "r_dataframe",
|
||||
"hash": "0",
|
||||
"contents": "",
|
||||
"dirty": false,
|
||||
"created": 1645068742704.0,
|
||||
"source_on_save": false,
|
||||
"relative_order": 5,
|
||||
"properties": {
|
||||
"expression": "res",
|
||||
"caption": "res",
|
||||
"totalObservations": 3,
|
||||
"displayedObservations": 3,
|
||||
"variables": 4,
|
||||
"cacheKey": "65140D37",
|
||||
"object": "res",
|
||||
"environment": "",
|
||||
"contentUrl": "grid_resource/gridviewer.html?env=&obj=res&cache_key=65140D37&max_cols=50",
|
||||
"preview": 0,
|
||||
"source_window_id": "",
|
||||
"Source": "Source"
|
||||
},
|
||||
"folds": "",
|
||||
"lastKnownWriteTime": 8206027058632,
|
||||
"encoding": "",
|
||||
"collab_server": "",
|
||||
"source_window": "",
|
||||
"last_content_update": 1645068742704,
|
||||
"read_only": false,
|
||||
"read_only_alternatives": []
|
||||
}
|
||||
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/4101911F
Normal file
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/4101911F
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
"id": "4101911F",
|
||||
"path": "~/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/self_estrada.R",
|
||||
"project_path": "self_estrada.R",
|
||||
"type": "r_source",
|
||||
"hash": "1080622386",
|
||||
"contents": "",
|
||||
"dirty": false,
|
||||
"created": 1645053522178.0,
|
||||
"source_on_save": false,
|
||||
"relative_order": 4,
|
||||
"properties": {
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "35,4",
|
||||
"scrollLine": "34"
|
||||
},
|
||||
"folds": "",
|
||||
"lastKnownWriteTime": 1645086032,
|
||||
"encoding": "UTF-8",
|
||||
"collab_server": "",
|
||||
"source_window": "",
|
||||
"last_content_update": 1645086032590,
|
||||
"read_only": false,
|
||||
"read_only_alternatives": []
|
||||
}
|
||||
77
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/4101911F-contents
Normal file
77
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/4101911F-contents
Normal file
@ -0,0 +1,77 @@
|
||||
estrada.index <- function(A, beta=NULL){
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
n <- length(lams)
|
||||
|
||||
# Create subfunction to compute centrality for one node, then use sapply
|
||||
# for all nodes
|
||||
subg.node.i <- function(i){sum(V[i,]^2*exp(beta*lams))}
|
||||
subg.all <- sapply(1:n, subg.node.i)
|
||||
EE <- sum(subg.all)
|
||||
|
||||
return(EE)
|
||||
}
|
||||
|
||||
microstate.prob <- function(A, beta=NULL){
|
||||
EE <- estrada.index(A, beta)
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
lams <- A.eigs$values
|
||||
|
||||
probs <- (exp(beta*lams))/EE
|
||||
|
||||
# Add names to output
|
||||
names(probs) <- V(g)$name
|
||||
return(probs)
|
||||
}
|
||||
|
||||
entropy <- function(A, beta=NULL, kb=NULL){
|
||||
microstate_probs <- microstate.prob(A, beta)
|
||||
EE <- estrada.index(A, beta)
|
||||
g <- A
|
||||
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
if (is.null(kb)){
|
||||
kb <- 1.0
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
|
||||
S <- -kb*beta*sum(lams*microstate_probs)+kb*log(EE)*sum(microstate_probs)
|
||||
return(S)
|
||||
}
|
||||
|
||||
34
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/6957530B
Normal file
34
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/6957530B
Normal file
@ -0,0 +1,34 @@
|
||||
{
|
||||
"id": "6957530B",
|
||||
"path": null,
|
||||
"project_path": null,
|
||||
"type": "r_dataframe",
|
||||
"hash": "0",
|
||||
"contents": "",
|
||||
"dirty": false,
|
||||
"created": 1645044390171.0,
|
||||
"source_on_save": false,
|
||||
"relative_order": 2,
|
||||
"properties": {
|
||||
"expression": "centralities",
|
||||
"caption": "centralities",
|
||||
"totalObservations": "3",
|
||||
"displayedObservations": "3",
|
||||
"variables": "5",
|
||||
"cacheKey": "75FD0B62",
|
||||
"object": "centralities",
|
||||
"environment": "",
|
||||
"contentUrl": "grid_resource/gridviewer.html?env=&obj=centralities&cache_key=75FD0B62&max_cols=50",
|
||||
"preview": "0",
|
||||
"source_window_id": "",
|
||||
"Source": "Source"
|
||||
},
|
||||
"folds": "",
|
||||
"lastKnownWriteTime": 1645041490,
|
||||
"encoding": "",
|
||||
"collab_server": "",
|
||||
"source_window": "",
|
||||
"last_content_update": 1645044390171,
|
||||
"read_only": false,
|
||||
"read_only_alternatives": []
|
||||
}
|
||||
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/DE635CF7
Normal file
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/DE635CF7
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
"id": "DE635CF7",
|
||||
"path": "~/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/katz_centrality.R",
|
||||
"project_path": "katz_centrality.R",
|
||||
"type": "r_source",
|
||||
"hash": "0",
|
||||
"contents": "",
|
||||
"dirty": false,
|
||||
"created": 1645045899785.0,
|
||||
"source_on_save": false,
|
||||
"relative_order": 3,
|
||||
"properties": {
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "48,0",
|
||||
"scrollLine": "36"
|
||||
},
|
||||
"folds": "",
|
||||
"lastKnownWriteTime": 1645061237,
|
||||
"encoding": "UTF-8",
|
||||
"collab_server": "",
|
||||
"source_window": "",
|
||||
"last_content_update": 1645061237934,
|
||||
"read_only": false,
|
||||
"read_only_alternatives": []
|
||||
}
|
||||
54
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/DE635CF7-contents
Normal file
54
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/DE635CF7-contents
Normal file
@ -0,0 +1,54 @@
|
||||
katz.cent <- function(A, alpha=NULL, beta=NULL){ #NULL sets the default value
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
#Error checking. Turn into adj matrix.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
if (is.null(alpha)){
|
||||
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
||||
}
|
||||
|
||||
n <- nrow(A)
|
||||
if (is.null(beta)){
|
||||
beta <- matrix(rep(1/n, n),ncol=1)
|
||||
}
|
||||
|
||||
#Katz scores
|
||||
scores <- solve(diag(n) - alpha*A,beta)
|
||||
names(scores) <- V(g)$name
|
||||
|
||||
return(scores)
|
||||
}
|
||||
|
||||
sg.katz <- function(A, alpha=NULL, beta=NULL){
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
if (is.null(alpha)){
|
||||
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
||||
}
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
n <- length(lams)
|
||||
|
||||
# Create subfunction to compute centrality for one node, then use sapply
|
||||
# for all nodes
|
||||
|
||||
subg.node.i <- function(i){sum(V[i,]^2/(1-alpha*lams))}
|
||||
|
||||
subg.all <- sapply(1:n, subg.node.i)
|
||||
|
||||
# Add names to output
|
||||
names(subg.all) <- V(g)$name
|
||||
|
||||
|
||||
return(subg.all)
|
||||
}
|
||||
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/F22781E7
Normal file
27
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/F22781E7
Normal file
@ -0,0 +1,27 @@
|
||||
{
|
||||
"id": "F22781E7",
|
||||
"path": "~/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/Schrick-Noah_CS-7863_Homework-2.R",
|
||||
"project_path": "Schrick-Noah_CS-7863_Homework-2.R",
|
||||
"type": "r_source",
|
||||
"hash": "499576880",
|
||||
"contents": "",
|
||||
"dirty": false,
|
||||
"created": 1645041345008.0,
|
||||
"source_on_save": false,
|
||||
"relative_order": 1,
|
||||
"properties": {
|
||||
"tempName": "Untitled1",
|
||||
"source_window_id": "",
|
||||
"Source": "Source",
|
||||
"cursorPosition": "240,0",
|
||||
"scrollLine": "226"
|
||||
},
|
||||
"folds": "",
|
||||
"lastKnownWriteTime": 1645090277,
|
||||
"encoding": "UTF-8",
|
||||
"collab_server": "",
|
||||
"source_window": "",
|
||||
"last_content_update": 1645090277195,
|
||||
"read_only": false,
|
||||
"read_only_alternatives": []
|
||||
}
|
||||
240
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/F22781E7-contents
Normal file
240
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/F22781E7-contents
Normal file
@ -0,0 +1,240 @@
|
||||
# Homework 2 for the University of Tulsa's CS-7863 Network Theory Course
|
||||
# Subgraph Centrality Comparisons, Microstate Computations, and Entropy
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
|
||||
# Imports
|
||||
#install.packages("igraph")
|
||||
#install.packages("igraphdata")
|
||||
#install.packages("reshape2")
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
library(reshape2)
|
||||
data(karate)
|
||||
data(kite)
|
||||
source("katz_centrality.R")
|
||||
source("self_estrada.R")
|
||||
|
||||
# 3 Networks: Karate, Kite, and Fig. 1a of the subgraph centrality paper
|
||||
g.one <- karate
|
||||
g.one.netname <- "Karate"
|
||||
|
||||
g.two <- kite
|
||||
g.two.netname <- "Kite"
|
||||
|
||||
g.fig1a <- graph.ring(8)
|
||||
for (idx in V(g.fig1a)) {V(g.fig1a)[idx]$name <- idx}
|
||||
g.fig1a <- g.fig1a %>% add_edges(c(2,8, 3,6, 4,7, 1,5))
|
||||
g.fig1a.netname <- "Fig1a"
|
||||
|
||||
####################### Part 1: Centrality Comparisons #########################
|
||||
# Container to hold results for each centrality measure
|
||||
centralities <- matrix(list(), nrow=3, ncol=5)
|
||||
rownames(centralities) <- c(g.one.netname, g.two.netname, g.fig1a.netname)
|
||||
colnames(centralities) <- c("Eigenvector", "Subgraph", "Betweenness", "Katz",
|
||||
"Subgraph-like Katz")
|
||||
|
||||
# Eigenvector - using igraph
|
||||
centralities[[1,1]] <- eigen_centrality(g.one)$vector %>% sort(decreasing=T)
|
||||
centralities[[2,1]] <- eigen_centrality(g.two)$vector %>% sort(decreasing=T)
|
||||
centralities[[3,1]] <- eigen_centrality(g.fig1a)$vector %>% sort(decreasing=T)
|
||||
|
||||
# Subgraph - using igraph
|
||||
centralities[[1,2]] <- subgraph.centrality(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,2]] <- subgraph.centrality(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,2]] <- subgraph.centrality(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
# Betweenness - using igraph
|
||||
centralities[[1,3]] <- betweenness(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,3]] <- betweenness(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,3]] <- betweenness(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
# Katz
|
||||
centralities[[1,4]] <- katz.cent(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,4]] <- katz.cent(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,4]] <- katz.cent(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
|
||||
# "Subgraph-like Katz"
|
||||
centralities[[1,5]] <- sg.katz(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,5]] <- sg.katz(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,5]] <- sg.katz(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
|
||||
####################### Part 2: Microstates and Entropy ########################
|
||||
# Create 3 100-node Erdos-Renyi random graph: 10%, 50%, and 100% attachment
|
||||
# probabilities. Will use a Beta of 0.01, 0.5, and 1.0 for all 3 networks.
|
||||
g.r.one <- erdos.renyi.game(100, .1)
|
||||
# for (idx in V(g.r.one)) {V(g.r.one)[idx]$name <- idx}
|
||||
g.r.one.netname <- "10% Attachment Probability"
|
||||
|
||||
g.r.two <- erdos.renyi.game(100, .5)
|
||||
for (idx in V(g.r.two)) {V(g.r.two)[idx]$name <- idx}
|
||||
g.r.two.netname <- "50% Attachment Probability"
|
||||
|
||||
g.r.three <- erdos.renyi.game(100, 1)
|
||||
for (idx in V(g.r.three)) {V(g.r.three)[idx]$name <- idx}
|
||||
g.r.three.netname <- "100% Attachment Probability"
|
||||
|
||||
# Container to hold results for each network
|
||||
res <- matrix(list(), nrow=3, ncol=4)
|
||||
rownames(res) <- c(g.r.one.netname, g.r.two.netname, g.r.three.netname)
|
||||
colnames(res) <- c("Degree Distribution", "Estrada Index",
|
||||
"Microstates p_i's", "Entropy")
|
||||
|
||||
# Degree Distribution-Not Dependent on Beta, but treating it for easier results
|
||||
res[[1,1]] <- list("0.01"=degree_distribution(g.r.one) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.one) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.one) %>% sort(decreasing=T))
|
||||
res[[2,1]] <- list("0.01"=degree_distribution(g.r.two) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.two) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.two) %>% sort(decreasing=T))
|
||||
res[[3,1]] <- list("0.01"=degree_distribution(g.r.three) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.three) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.three) %>% sort(decreasing=T))
|
||||
|
||||
# Compute EE
|
||||
res[[1,2]] <- list("0.01"=estrada.index(g.r.one, 0.01),
|
||||
"0.5"=estrada.index(g.r.one, 0.5),
|
||||
"1.0"=estrada.index(g.r.one, 1))
|
||||
res[[2,2]] <- list("0.01"=estrada.index(g.r.two, 0.01),
|
||||
"0.5"=estrada.index(g.r.two, 0.5),
|
||||
"1.0"=estrada.index(g.r.two, 1))
|
||||
res[[3,2]] <- list("0.01"=estrada.index(g.r.three, 0.01),
|
||||
"0.5"=estrada.index(g.r.three, 0.5),
|
||||
"1.0"=estrada.index(g.r.three, 1))
|
||||
|
||||
# Compute Microstates
|
||||
res[[1,3]] <- list("0.01"=microstate.prob(g.r.one, 0.01),
|
||||
"0.5"=microstate.prob(g.r.one, 0.5),
|
||||
"1.0"=microstate.prob(g.r.one, 1))
|
||||
res[[2,3]] <- list("0.01"=microstate.prob(g.r.two, 0.01),
|
||||
"0.5"=microstate.prob(g.r.two, 0.5),
|
||||
"1.0"=microstate.prob(g.r.two, 1))
|
||||
res[[3,3]] <- list("0.01"=microstate.prob(g.r.three, 0.01),
|
||||
"0.5"=microstate.prob(g.r.three, 0.5),
|
||||
"1.0"=microstate.prob(g.r.three, 1))
|
||||
|
||||
# Histogram Display
|
||||
# 10% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[1,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[1,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[1,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
# 50% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[2,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[2,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[2,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
# 100% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[3,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[3,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[3,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
|
||||
# Entropy
|
||||
res[[1,4]] <- list("0.01"=entropy(g.r.one, 0.01),
|
||||
"0.5"=entropy(g.r.one, 0.5),
|
||||
"1.0"=entropy(g.r.one, 1))
|
||||
res[[2,4]] <- list("0.01"=entropy(g.r.two, 0.01),
|
||||
"0.5"=entropy(g.r.two, 0.5),
|
||||
"1.0"=entropy(g.r.two, 1))
|
||||
res[[3,4]] <- list("0.01"=entropy(g.r.three, 0.01),
|
||||
"0.5"=entropy(g.r.three, 0.5),
|
||||
"1.0"=entropy(g.r.three, 1))
|
||||
y1 <- c(unlist(res[[1,4]]["0.01"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["0.01"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["0.01"], use.names=FALSE))
|
||||
|
||||
y2 <- c(unlist(res[[1,4]]["0.5"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["0.5"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["0.5"], use.names=FALSE))
|
||||
|
||||
y3 <-c(unlist(res[[1,4]]["1.0"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["1.0"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["1.0"], use.names=FALSE))
|
||||
|
||||
par(mfrow=c(3,1))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y1, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=0.01", lty=1,
|
||||
ylim=c(min(y1),max(y1)))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y2, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=0.5", lty=1, ylim=c(min(y2),max(y2)))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y3, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=1.0", lty=1, ylim=c(min(y3),max(y3)))
|
||||
|
||||
|
||||
# igraph network entropy
|
||||
g1 <- entropy(g.one,0.01)
|
||||
g2 <- entropy(g.one,0.5)
|
||||
g3 <-entropy(g.one,1.0)
|
||||
|
||||
# Simulate a random graph network with n = n of igraph network
|
||||
n <- vcount(g.one)
|
||||
attachment <- sum(degree(g.one))/vcount(g.one)
|
||||
g1.rand <- erdos.renyi.game(n, attachment/(n-1))
|
||||
|
||||
g1.rand.o <- entropy(g1.rand,0.01)
|
||||
g1.rand.t <- entropy(g1.rand,0.5)
|
||||
g1.rand.th <- entropy(g1.rand,1.0)
|
||||
|
||||
# Compare entropy of these random graphs to their original counterparts
|
||||
par(mfrow=c(1,1))
|
||||
plot(x=c(0.01,0.5,1.0), y=c(g1,g2,g3), col="red", type="o", pch="o",
|
||||
xlab="Beta Values", ylab="Entropy",
|
||||
main="Entropies for the igraph Karate network vs
|
||||
a related Erdos-Renyi random network",
|
||||
ylim=c(min(g1,g2,g3,g1.rand.o,g1.rand.t,g1.rand.th),
|
||||
max(g1,g2,g3,g1.rand.o,g1.rand.t,g1.rand.th)), lty=1)
|
||||
points(x=c(0.01,0.5,1.0), y=c(g1.rand.o,g1.rand.t,g1.rand.th),pch="*",
|
||||
col="black")
|
||||
lines(x=c(0.01,0.5,1.0), y=c(g1.rand.o,g1.rand.t,g1.rand.th), lty=2,
|
||||
col="black")
|
||||
legend("bottomleft",
|
||||
legend=c("Karate", "Erdos-Renyi"), col=c("red","black"), pch=c("o","*"),
|
||||
lty=c(1,3),ncol=1)
|
||||
0
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/lock_file
Normal file
0
.Rproj.user/C3768FE8/sources/s-5CCDCDB3/lock_file
Normal file
0
.Rproj.user/shared/notebooks/patch-chunk-names
Normal file
0
.Rproj.user/shared/notebooks/patch-chunk-names
Normal file
3
.Rproj.user/shared/notebooks/paths
Normal file
3
.Rproj.user/shared/notebooks/paths
Normal file
@ -0,0 +1,3 @@
|
||||
/home/noah/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/Schrick-Noah_CS-7863_Homework-2.R="228CC0E6"
|
||||
/home/noah/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/katz_centrality.R="316D2819"
|
||||
/home/noah/Documents/School/CS-7863_Network-Theory/R_Projects/Homework/2/self_estrada.R="D4486536"
|
||||
13
2.Rproj
Normal file
13
2.Rproj
Normal file
@ -0,0 +1,13 @@
|
||||
Version: 1.0
|
||||
|
||||
RestoreWorkspace: Default
|
||||
SaveWorkspace: Default
|
||||
AlwaysSaveHistory: Default
|
||||
|
||||
EnableCodeIndexing: Yes
|
||||
UseSpacesForTab: Yes
|
||||
NumSpacesForTab: 4
|
||||
Encoding: UTF-8
|
||||
|
||||
RnwWeave: Sweave
|
||||
LaTeX: pdfLaTeX
|
||||
240
Schrick-Noah_CS-7863_Homework-2.R
Normal file
240
Schrick-Noah_CS-7863_Homework-2.R
Normal file
@ -0,0 +1,240 @@
|
||||
# Homework 2 for the University of Tulsa's CS-7863 Network Theory Course
|
||||
# Subgraph Centrality Comparisons, Microstate Computations, and Entropy
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
|
||||
# Imports
|
||||
#install.packages("igraph")
|
||||
#install.packages("igraphdata")
|
||||
#install.packages("reshape2")
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
library(reshape2)
|
||||
data(karate)
|
||||
data(kite)
|
||||
source("katz_centrality.R")
|
||||
source("self_estrada.R")
|
||||
|
||||
# 3 Networks: Karate, Kite, and Fig. 1a of the subgraph centrality paper
|
||||
g.one <- karate
|
||||
g.one.netname <- "Karate"
|
||||
|
||||
g.two <- kite
|
||||
g.two.netname <- "Kite"
|
||||
|
||||
g.fig1a <- graph.ring(8)
|
||||
for (idx in V(g.fig1a)) {V(g.fig1a)[idx]$name <- idx}
|
||||
g.fig1a <- g.fig1a %>% add_edges(c(2,8, 3,6, 4,7, 1,5))
|
||||
g.fig1a.netname <- "Fig1a"
|
||||
|
||||
####################### Part 1: Centrality Comparisons #########################
|
||||
# Container to hold results for each centrality measure
|
||||
centralities <- matrix(list(), nrow=3, ncol=5)
|
||||
rownames(centralities) <- c(g.one.netname, g.two.netname, g.fig1a.netname)
|
||||
colnames(centralities) <- c("Eigenvector", "Subgraph", "Betweenness", "Katz",
|
||||
"Subgraph-like Katz")
|
||||
|
||||
# Eigenvector - using igraph
|
||||
centralities[[1,1]] <- eigen_centrality(g.one)$vector %>% sort(decreasing=T)
|
||||
centralities[[2,1]] <- eigen_centrality(g.two)$vector %>% sort(decreasing=T)
|
||||
centralities[[3,1]] <- eigen_centrality(g.fig1a)$vector %>% sort(decreasing=T)
|
||||
|
||||
# Subgraph - using igraph
|
||||
centralities[[1,2]] <- subgraph.centrality(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,2]] <- subgraph.centrality(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,2]] <- subgraph.centrality(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
# Betweenness - using igraph
|
||||
centralities[[1,3]] <- betweenness(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,3]] <- betweenness(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,3]] <- betweenness(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
# Katz
|
||||
centralities[[1,4]] <- katz.cent(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,4]] <- katz.cent(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,4]] <- katz.cent(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
|
||||
# "Subgraph-like Katz"
|
||||
centralities[[1,5]] <- sg.katz(g.one) %>% sort(decreasing=T)
|
||||
centralities[[2,5]] <- sg.katz(g.two) %>% sort(decreasing=T)
|
||||
centralities[[3,5]] <- sg.katz(g.fig1a) %>% sort(decreasing=T)
|
||||
|
||||
|
||||
####################### Part 2: Microstates and Entropy ########################
|
||||
# Create 3 100-node Erdos-Renyi random graph: 10%, 50%, and 100% attachment
|
||||
# probabilities. Will use a Beta of 0.01, 0.5, and 1.0 for all 3 networks.
|
||||
g.r.one <- erdos.renyi.game(100, .1)
|
||||
# for (idx in V(g.r.one)) {V(g.r.one)[idx]$name <- idx}
|
||||
g.r.one.netname <- "10% Attachment Probability"
|
||||
|
||||
g.r.two <- erdos.renyi.game(100, .5)
|
||||
for (idx in V(g.r.two)) {V(g.r.two)[idx]$name <- idx}
|
||||
g.r.two.netname <- "50% Attachment Probability"
|
||||
|
||||
g.r.three <- erdos.renyi.game(100, 1)
|
||||
for (idx in V(g.r.three)) {V(g.r.three)[idx]$name <- idx}
|
||||
g.r.three.netname <- "100% Attachment Probability"
|
||||
|
||||
# Container to hold results for each network
|
||||
res <- matrix(list(), nrow=3, ncol=4)
|
||||
rownames(res) <- c(g.r.one.netname, g.r.two.netname, g.r.three.netname)
|
||||
colnames(res) <- c("Degree Distribution", "Estrada Index",
|
||||
"Microstates p_i's", "Entropy")
|
||||
|
||||
# Degree Distribution-Not Dependent on Beta, but treating it for easier results
|
||||
res[[1,1]] <- list("0.01"=degree_distribution(g.r.one) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.one) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.one) %>% sort(decreasing=T))
|
||||
res[[2,1]] <- list("0.01"=degree_distribution(g.r.two) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.two) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.two) %>% sort(decreasing=T))
|
||||
res[[3,1]] <- list("0.01"=degree_distribution(g.r.three) %>% sort(decreasing=T),
|
||||
"0.5"=degree_distribution(g.r.three) %>% sort(decreasing=T),
|
||||
"1.0"=degree_distribution(g.r.three) %>% sort(decreasing=T))
|
||||
|
||||
# Compute EE
|
||||
res[[1,2]] <- list("0.01"=estrada.index(g.r.one, 0.01),
|
||||
"0.5"=estrada.index(g.r.one, 0.5),
|
||||
"1.0"=estrada.index(g.r.one, 1))
|
||||
res[[2,2]] <- list("0.01"=estrada.index(g.r.two, 0.01),
|
||||
"0.5"=estrada.index(g.r.two, 0.5),
|
||||
"1.0"=estrada.index(g.r.two, 1))
|
||||
res[[3,2]] <- list("0.01"=estrada.index(g.r.three, 0.01),
|
||||
"0.5"=estrada.index(g.r.three, 0.5),
|
||||
"1.0"=estrada.index(g.r.three, 1))
|
||||
|
||||
# Compute Microstates
|
||||
res[[1,3]] <- list("0.01"=microstate.prob(g.r.one, 0.01),
|
||||
"0.5"=microstate.prob(g.r.one, 0.5),
|
||||
"1.0"=microstate.prob(g.r.one, 1))
|
||||
res[[2,3]] <- list("0.01"=microstate.prob(g.r.two, 0.01),
|
||||
"0.5"=microstate.prob(g.r.two, 0.5),
|
||||
"1.0"=microstate.prob(g.r.two, 1))
|
||||
res[[3,3]] <- list("0.01"=microstate.prob(g.r.three, 0.01),
|
||||
"0.5"=microstate.prob(g.r.three, 0.5),
|
||||
"1.0"=microstate.prob(g.r.three, 1))
|
||||
|
||||
# Histogram Display
|
||||
# 10% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[1,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[1,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[1,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 10% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
# 50% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[2,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[2,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[2,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 50% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
# 100% Attachment Probability Network
|
||||
par(mfrow=c(3,1))
|
||||
g.r<- unlist(res[[3,3]]["0.01"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=0.01",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[3,3]]["0.5"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=0.5",
|
||||
xlab="Occupation Probability")
|
||||
g.r <- unlist(res[[3,3]]["1.0"], use.names=FALSE)
|
||||
hist(g.r,
|
||||
main="Microstate Histogram for a 100-node Erdos-Renyi random
|
||||
graph with attachment probability 100% and Beta=1.0",
|
||||
xlab="Occupation Probability")
|
||||
|
||||
# Entropy
|
||||
res[[1,4]] <- list("0.01"=entropy(g.r.one, 0.01),
|
||||
"0.5"=entropy(g.r.one, 0.5),
|
||||
"1.0"=entropy(g.r.one, 1))
|
||||
res[[2,4]] <- list("0.01"=entropy(g.r.two, 0.01),
|
||||
"0.5"=entropy(g.r.two, 0.5),
|
||||
"1.0"=entropy(g.r.two, 1))
|
||||
res[[3,4]] <- list("0.01"=entropy(g.r.three, 0.01),
|
||||
"0.5"=entropy(g.r.three, 0.5),
|
||||
"1.0"=entropy(g.r.three, 1))
|
||||
y1 <- c(unlist(res[[1,4]]["0.01"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["0.01"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["0.01"], use.names=FALSE))
|
||||
|
||||
y2 <- c(unlist(res[[1,4]]["0.5"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["0.5"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["0.5"], use.names=FALSE))
|
||||
|
||||
y3 <-c(unlist(res[[1,4]]["1.0"], use.names=FALSE),
|
||||
unlist(res[[2,4]]["1.0"], use.names=FALSE),
|
||||
unlist(res[[3,4]]["1.0"], use.names=FALSE))
|
||||
|
||||
par(mfrow=c(3,1))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y1, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=0.01", lty=1,
|
||||
ylim=c(min(y1),max(y1)))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y2, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=0.5", lty=1, ylim=c(min(y2),max(y2)))
|
||||
|
||||
plot(x=c(0.1,0.5,1.0), y=y3, col="red", type="o", pch="o",
|
||||
xlab="Attachment Probability", ylab="Entropy",
|
||||
main="Entropies for a 100-node Erdos-Renyi random
|
||||
graph with varying attachment probability and Beta=1.0", lty=1, ylim=c(min(y3),max(y3)))
|
||||
|
||||
|
||||
# igraph network entropy
|
||||
g1 <- entropy(g.one,0.01)
|
||||
g2 <- entropy(g.one,0.5)
|
||||
g3 <-entropy(g.one,1.0)
|
||||
|
||||
# Simulate a random graph network with n = n of igraph network
|
||||
n <- vcount(g.one)
|
||||
attachment <- sum(degree(g.one))/vcount(g.one)
|
||||
g1.rand <- erdos.renyi.game(n, attachment/(n-1))
|
||||
|
||||
g1.rand.o <- entropy(g1.rand,0.01)
|
||||
g1.rand.t <- entropy(g1.rand,0.5)
|
||||
g1.rand.th <- entropy(g1.rand,1.0)
|
||||
|
||||
# Compare entropy of these random graphs to their original counterparts
|
||||
par(mfrow=c(1,1))
|
||||
plot(x=c(0.01,0.5,1.0), y=c(g1,g2,g3), col="red", type="o", pch="o",
|
||||
xlab="Beta Values", ylab="Entropy",
|
||||
main="Entropies for the igraph Karate network vs
|
||||
a related Erdos-Renyi random network",
|
||||
ylim=c(min(g1,g2,g3,g1.rand.o,g1.rand.t,g1.rand.th),
|
||||
max(g1,g2,g3,g1.rand.o,g1.rand.t,g1.rand.th)), lty=1)
|
||||
points(x=c(0.01,0.5,1.0), y=c(g1.rand.o,g1.rand.t,g1.rand.th),pch="*",
|
||||
col="black")
|
||||
lines(x=c(0.01,0.5,1.0), y=c(g1.rand.o,g1.rand.t,g1.rand.th), lty=2,
|
||||
col="black")
|
||||
legend("bottomleft",
|
||||
legend=c("Karate", "Erdos-Renyi"), col=c("red","black"), pch=c("o","*"),
|
||||
lty=c(1,3),ncol=1)
|
||||
54
katz_centrality.R
Normal file
54
katz_centrality.R
Normal file
@ -0,0 +1,54 @@
|
||||
katz.cent <- function(A, alpha=NULL, beta=NULL){ #NULL sets the default value
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
#Error checking. Turn into adj matrix.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
if (is.null(alpha)){
|
||||
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
||||
}
|
||||
|
||||
n <- nrow(A)
|
||||
if (is.null(beta)){
|
||||
beta <- matrix(rep(1/n, n),ncol=1)
|
||||
}
|
||||
|
||||
#Katz scores
|
||||
scores <- solve(diag(n) - alpha*A,beta)
|
||||
names(scores) <- V(g)$name
|
||||
|
||||
return(scores)
|
||||
}
|
||||
|
||||
sg.katz <- function(A, alpha=NULL, beta=NULL){
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
if (is.null(alpha)){
|
||||
alpha <- 0.9 * (1/lam.dom) #Set alpha to 90% of max allowed
|
||||
}
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
n <- length(lams)
|
||||
|
||||
# Create subfunction to compute centrality for one node, then use sapply
|
||||
# for all nodes
|
||||
|
||||
subg.node.i <- function(i){sum(V[i,]^2/(1-alpha*lams))}
|
||||
|
||||
subg.all <- sapply(1:n, subg.node.i)
|
||||
|
||||
# Add names to output
|
||||
names(subg.all) <- V(g)$name
|
||||
|
||||
|
||||
return(subg.all)
|
||||
}
|
||||
77
self_estrada.R
Normal file
77
self_estrada.R
Normal file
@ -0,0 +1,77 @@
|
||||
estrada.index <- function(A, beta=NULL){
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
n <- length(lams)
|
||||
|
||||
# Create subfunction to compute centrality for one node, then use sapply
|
||||
# for all nodes
|
||||
subg.node.i <- function(i){sum(V[i,]^2*exp(beta*lams))}
|
||||
subg.all <- sapply(1:n, subg.node.i)
|
||||
EE <- sum(subg.all)
|
||||
|
||||
return(EE)
|
||||
}
|
||||
|
||||
microstate.prob <- function(A, beta=NULL){
|
||||
EE <- estrada.index(A, beta)
|
||||
g <- A
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
A.eigs <- eigen(A)
|
||||
lams <- A.eigs$values
|
||||
|
||||
probs <- (exp(beta*lams))/EE
|
||||
|
||||
# Add names to output
|
||||
names(probs) <- V(g)$name
|
||||
return(probs)
|
||||
}
|
||||
|
||||
entropy <- function(A, beta=NULL, kb=NULL){
|
||||
microstate_probs <- microstate.prob(A, beta)
|
||||
EE <- estrada.index(A, beta)
|
||||
g <- A
|
||||
|
||||
if (class(A) == 'igraph'){
|
||||
# Error checking. Turn into adj matrix if needed.
|
||||
A <- get.adjacency(A)
|
||||
}
|
||||
|
||||
if (is.null(beta)){
|
||||
beta <- 1.0
|
||||
}
|
||||
|
||||
if (is.null(kb)){
|
||||
kb <- 1.0
|
||||
}
|
||||
|
||||
lam.dom <- eigen(A)$values[1] #dom eigenvec
|
||||
A.eigs <- eigen(A)
|
||||
V <- A.eigs$vectors # where columns are the v_i terms
|
||||
lams <- A.eigs$values
|
||||
|
||||
S <- -kb*beta*sum(lams*microstate_probs)+kb*log(EE)*sum(microstate_probs)
|
||||
return(S)
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user