Compare commits

...

2 Commits

Author SHA1 Message Date
3e37d31d22 Graph laplacian and reursive newman modularity 2022-04-30 16:03:21 -05:00
d7e9098582 Graph laplacian 2022-04-30 15:29:07 -05:00
3 changed files with 205 additions and 0 deletions

View File

@ -11,8 +11,24 @@ setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
source("./CG_Files/manual_import.R") source("./CG_Files/manual_import.R")
car <- import_networks(1) car <- import_networks(1)
car.netname <- "Vehicle Maintenance"
hipaa <- import_networks(2) hipaa <- import_networks(2)
hipaa.netname <- "HIPAA Compliance"
pci <- import_networks(3) pci <- import_networks(3)
pci.netname <- "PCI Compliance"
# Get basic network attributes
car.adj <- get.adjacency(car)
car.deg <- rowSums(as.matrix(car.adj)) # degree
car.n <- length(V(car))
hipaa.adj <- get.adjacency(hipaa)
hipaa.deg <- rowSums(as.matrix(hipaa.adj)) # degree
hipaa.n <- length(V(hipaa))
pci.adj <- get.adjacency(pci)
pci.deg <- rowSums(as.matrix(pci.adj)) # degree
pci.n <- length(V(pci))
################################ Centralities ################################ ################################ Centralities ################################
source("centralities.R") source("centralities.R")
@ -29,8 +45,73 @@ pci.pr <- page.rank(pci)
### K-path ### K-path
car.kpe <- geokpath(car, V(car), "out") car.kpe <- geokpath(car, V(car), "out")
hipaa.kpe <- geokpath(hipaa, V(hipaa), "out")
pci.kpe <- geokpath(pci, V(pci), "out")
############## Clustering
source("self_newman_mod.R")
### Laplacian
car.Lap <- diag(car.deg) - car.adj # L = D-A
hipaa.Lap <- diag(hipaa.deg) - hipaa.adj
pci.Lap <- diag(pci.deg) - pci.adj
# get eigvals and vecs
car.eigs <- eigen(car.Lap)$vectors[,car.n-1]
car.eig_val <- eigen(car.Lap)$values[car.n-1]
names(car.eigs) <- names(V(car))
car.l_clusters <- ifelse(car.eigs>0,1,-1)
hipaa.eigs <- eigen(hipaa.Lap)$vectors[,hipaa.n-1]
hipaa.eig_val <- eigen(hipaa.Lap)$values[hipaa.n-1]
names(hipaa.eigs) <- names(V(hipaa))
hipaa.l_clusters <- ifelse(hipaa.eigs>0,1,-1)
pci.eigs <- eigen(pci.Lap)$vectors[,pci.n-1]
pci.eig_val <- eigen(pci.Lap)$values[pci.n-1]
names(pci.eigs) <- names(V(pci))
pci.l_clusters <- ifelse(pci.eigs>0,1,-1)
### Recursive Newmann
car.modularity <- fastgreedy.community(car,merges=TRUE, modularity=TRUE, membership=TRUE)
car.membership.ids <- unique(car.modularity$membership)
cat(paste('Number of detected communities in the car network =',length(car.membership.ids)))
cat("community sizes: ")
sapply(membership.ids,function(x) {sum(x==car.modularity$membership)})
cat("modularity: ")
max(car.modularity$modularity)
V(car)$color=car.modularity$membership
plot(car,vertex.size=10,
vertex.label=NA,vertex.color=V(car)$color,
main=paste(car.netname, " Recursive Newman Modularity"))
hipaa.modularity <- fastgreedy.community(hipaa,merges=TRUE, modularity=TRUE, membership=TRUE)
hipaa.membership.ids <- unique(hipaa.modularity$membership)
cat(paste('Number of detected communities in the HIPAA network =',length(hipaa.membership.ids)))
cat("community sizes: ")
sapply(membership.ids,function(x) {sum(x==hipaa.modularity$membership)})
cat("modularity: ")
max(hipaa.modularity$modularity)
V(hipaa)$color=hipaa.modularity$membership
plot(hipaa,vertex.size=10,
vertex.label=NA,vertex.color=V(hipaa)$color,
main=paste(hipaa.netname, " Recursive Newman Modularity"))
pci.modularity <- fastgreedy.community(pci,merges=TRUE, modularity=TRUE, membership=TRUE)
pci.membership.ids <- unique(pci.modularity$membership)
cat(paste('Number of detected communities in the PCI network =',length(pci.membership.ids)))
cat("community sizes: ")
sapply(membership.ids,function(x) {sum(x==pci.modularity$membership)})
cat("modularity: ")
max(pci.modularity$modularity)
V(pci)$color=pci.modularity$membership
plot(pci,vertex.size=10,
vertex.label=NA,vertex.color=V(pci)$color,
main=paste(pci.netname, " Recursive Newman Modularity"))
############# Other- Tmp work ############# Other- Tmp work
min_cut(car,"0", "2490") min_cut(car,"0", "2490")
min_cut(hipaa,"0","2320") min_cut(hipaa,"0","2320")

81
self_estrada.R Normal file
View File

@ -0,0 +1,81 @@
estrada.index <- function(A, beta=NULL){
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
lam.dom <- eigen(A)$values[1] #dom eigenvec
A.eigs <- eigen(A)
V <- A.eigs$vectors # where columns are the v_i terms
lams <- A.eigs$values
n <- length(lams)
# Create subfunction to compute centrality for one node, then use sapply
# for all nodes
subg.node.i <- function(i){sum(V[i,]^2*exp(beta*lams))}
subg.all <- sapply(1:n, subg.node.i)
EE <- sum(subg.all)
return(EE)
}
microstate.prob <- function(A, beta=NULL){
EE <- estrada.index(A, beta)
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
A.eigs <- eigen(A)
lams <- A.eigs$values
probs <- (exp(beta*lams))/EE
# Experiment with lambda being negative
#probs <- (exp(beta*-lams))/EE
# Add names to output
names(probs) <- V(g)$name
return(probs)
}
entropy <- function(A, beta=NULL, kb=NULL){
microstate_probs <- microstate.prob(A, beta)
EE <- estrada.index(A, beta)
g <- A
if (class(A) == 'igraph'){
# Error checking. Turn into adj matrix if needed.
A <- get.adjacency(A)
}
if (is.null(beta)){
beta <- 1.0
}
if (is.null(kb)){
kb <- 1.0
}
lam.dom <- eigen(A)$values[1] #dom eigenvec
A.eigs <- eigen(A)
V <- A.eigs$vectors # where columns are the v_i terms
lams <- A.eigs$values
S <- -kb*beta*sum(lams*microstate_probs)+kb*log(EE)*sum(microstate_probs)
return(S)
}

43
self_newman_mod.R Normal file
View File

@ -0,0 +1,43 @@
newman_mod <- function(g, weights=NULL){
A <- get.adjacency(g) # adj
m <- ecount(g)
n <- vcount(g)
if (is.null(weights)){
weights <- rep(1,n)
}
# Obtain the modularity matrix
B.node.i <- function(i){degree(g)[i]*degree(g)}
B.node.all <- sapply(1:n, B.node.i)
B <- A - (B.node.all/(2*m))
# NOTE: This is identical to: modularity_matrix(g) ! Can verify with:
# modularity_matrix(g) == B
B.eigs <- eigen(B)
max.lam <- B.eigs$values[1]
s <- ifelse(B.eigs$vectors[,1]>0,1,-1)
weights <- B.eigs$vectors[n]/B.eigs$vectors[,1]
# Plotting
#V(g)$color <- ifelse(B[1,]>0,"green","yellow")
V(g)$color <- ifelse(B.eigs$vectors[,1]>0,"green","yellow")
V(g)$size <- 10
plot(g, main=paste(g.netname, " Newman Modularity"))
clust1 = list()
clust2 = list()
clusters = list()
# Make list of clusters
for(i in 1:n){
ifelse(V(g)[i]$color=="green",
clust1 <- append(clust1, V(g)[i]$name),
clust2 <- append(clust2, V(g)[i]$name))}
clusters <- list(clust1, clust2)
Q.node.i <- function(i){sum(
(((B.eigs$vectors[i])*weights[i]*s)^2)*B.eigs[i]$values)}
Q <- (1/(4*m))*sapply(1:n, Q.node.i)
return(list(Q=Q,max.lam=max.lam,weights=weights,clusters=clusters))
}