Adding Methodology work
This commit is contained in:
parent
d6daacab6e
commit
40dace2ba3
BIN
Results/data.ods
BIN
Results/data.ods
Binary file not shown.
512
Code/Data/.Rhistory
Normal file
512
Code/Data/.Rhistory
Normal file
@ -0,0 +1,512 @@
|
|||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1,2)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
#g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.breaks <- g.hist$breaks # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
alpha.LM
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||||
|
plot(yeast)
|
||||||
|
hist(yeast)
|
||||||
|
hist(g.vec)
|
||||||
|
g.pois
|
||||||
|
g.mean
|
||||||
|
alpha.LM
|
||||||
|
alpha.ML
|
||||||
|
degree(g)
|
||||||
|
sort(degree(g))
|
||||||
|
sort(degree(g),decreasing=FALSE)
|
||||||
|
sort(degree(g),decreasing=F)
|
||||||
|
sort(degree(g),decreasing=false)
|
||||||
|
sort(degree(g), decreasing = TRUE)
|
||||||
|
head(sort(degree(g), decreasing = TRUE))
|
||||||
|
stddev(degree(g))
|
||||||
|
sd(degree(g))
|
||||||
|
tail(sort(degree(g), decreasing = TRUE))
|
||||||
|
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||||
|
# Degree Distribution
|
||||||
|
# Professor: Dr. McKinney, Spring 2022
|
||||||
|
# Noah Schrick - 1492657
|
||||||
|
library(igraph)
|
||||||
|
library(igraphdata)
|
||||||
|
data(yeast)
|
||||||
|
g <- yeast
|
||||||
|
g.netname <- "Yeast"
|
||||||
|
################# Set up Work #################
|
||||||
|
g.vec <- degree(g)
|
||||||
|
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||||
|
" Network"))
|
||||||
|
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||||
|
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||||
|
"#006CD1", "#E66100", "#D35FB7"))
|
||||||
|
g.mean <- mean(g.vec)
|
||||||
|
g.seq <- 0:max(g.vec) # x-axis
|
||||||
|
################# Guessing Alpha #################
|
||||||
|
alpha.guess <- 1.5
|
||||||
|
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||||
|
################# Poisson #################
|
||||||
|
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||||
|
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||||
|
################# Linear model: Least-Squares Fit #################
|
||||||
|
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||||
|
g.probs <- g.hist$density[-1] # make lengths match
|
||||||
|
# Need to clean up probabilities that are 0
|
||||||
|
nz.probs.mask <- g.probs!=0
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||||
|
summary(g.fit)
|
||||||
|
alpha.LM <- coef(g.fit)[2]
|
||||||
|
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||||
|
################# Max-Log-Likelihood #################
|
||||||
|
n <- length(g.breaks.clean)
|
||||||
|
kmin <- g.breaks.clean[1]
|
||||||
|
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||||
|
alpha.ML
|
||||||
|
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||||
|
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||||
|
g.probs.clean <- g.probs[nz.probs.mask]
|
||||||
|
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||||
|
BiocManager::install()
|
||||||
|
simDats <- createSimulation2(data.type = "discrete", avg.maf = 0.2, sim.type = "mainEffect",
|
||||||
|
pct.train = 0.5, pct.holdout = 0.5, pct.validation = 0,
|
||||||
|
main.bias = 0.4, pct.signals = 0.2)
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
library(npdro)
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
if (!require("npdro")) install.packages("npdro")
|
||||||
|
library(npdro)
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
install_github("insilico/npdro")
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
if (!require("devtools")) install.packages("devtools")
|
||||||
|
library(devtools)
|
||||||
|
install_github("insilico/npdro")
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
if (!require("devtools")) install.packages("devtools")
|
||||||
|
?createSimulation2
|
||||||
|
# npdro::createSimulation2() example for gwas simulation
|
||||||
|
if (!require("devtools")) install.packages("devtools")
|
||||||
|
library(devtools)
|
||||||
|
install_github("insilico/npdro")
|
||||||
|
library(npdro)
|
||||||
|
## Set Working Directory to file directory - RStudio approach
|
||||||
|
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||||
|
gen.gwas = function(samples, vars, batch_size=1000){
|
||||||
|
for (x in 1:ceiling(samples/batch_size)){
|
||||||
|
curr_batch <- samples - (batch_size*(x-1))
|
||||||
|
batch_gen <- ifelse(curr_batch > batch_size, batch_size, curr_batch)
|
||||||
|
data <- createSimulation2(data.type = "discrete", avg.maf = 0.2,
|
||||||
|
sim.type = "mainEffect",
|
||||||
|
pct.train = 1.0,
|
||||||
|
pct.imbalance=round(runif(n = 1, min = 0.1, max = 0.9),2),
|
||||||
|
main.bias = 0.4, pct.signals = 0.2,
|
||||||
|
num.samples = batch_gen,
|
||||||
|
num.variables = vars)
|
||||||
|
rownames(data$train) <- as.integer(rownames(data$train))+
|
||||||
|
(batch_size*(x-1))
|
||||||
|
if (x == 1){
|
||||||
|
write.table(data$train, "artif_gwas.csv", row.names = TRUE)
|
||||||
|
} else{
|
||||||
|
write.table(data$train, "artif_gwas.csv", row.names = TRUE,
|
||||||
|
append = TRUE, col.names = FALSE)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return(data$train)
|
||||||
|
}
|
||||||
|
?createSimulation2
|
||||||
@ -1 +0,0 @@
|
|||||||
,noah,NovaArchSys,06.12.2022 17:33,file:///home/noah/.config/libreoffice/4;
|
|
||||||
@ -1 +0,0 @@
|
|||||||
,noah,NovaArchSys,06.12.2022 17:29,file:///home/noah/.config/libreoffice/4;
|
|
||||||
Binary file not shown.
BIN
Results/data.ods
Normal file
BIN
Results/data.ods
Normal file
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user