diff --git a/.Rhistory b/.Rhistory new file mode 100644 index 0000000..d931055 --- /dev/null +++ b/.Rhistory @@ -0,0 +1,512 @@ +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.breaks[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1,2)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.breaks[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.breaks[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.breaks[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +#g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.breaks <- g.hist$breaks # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.breaks[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +alpha.LM +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +#plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3) +plot(yeast) +hist(yeast) +hist(g.vec) +g.pois +g.mean +alpha.LM +alpha.ML +degree(g) +sort(degree(g)) +sort(degree(g),decreasing=FALSE) +sort(degree(g),decreasing=F) +sort(degree(g),decreasing=false) +sort(degree(g), decreasing = TRUE) +head(sort(degree(g), decreasing = TRUE)) +stddev(degree(g)) +sd(degree(g)) +tail(sort(degree(g), decreasing = TRUE)) +plot(log(g.breaks.clean), log(g.probs.clean)) +# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course +# Degree Distribution +# Professor: Dr. McKinney, Spring 2022 +# Noah Schrick - 1492657 +library(igraph) +library(igraphdata) +data(yeast) +g <- yeast +g.netname <- "Yeast" +################# Set up Work ################# +g.vec <- degree(g) +g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, +" Network")) +legend("topright", c("Guess", "Poisson", "Least-Squares Fit", +"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", +"#006CD1", "#E66100", "#D35FB7")) +g.mean <- mean(g.vec) +g.seq <- 0:max(g.vec) # x-axis +################# Guessing Alpha ################# +alpha.guess <- 1.5 +lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) +################# Poisson ################# +g.pois <- dpois(g.seq, g.mean, log=F) +lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3) +################# Linear model: Least-Squares Fit ################# +g.breaks <- g.hist$breaks[-c(1)] # remove 0 +g.probs <- g.hist$density[-1] # make lengths match +# Need to clean up probabilities that are 0 +nz.probs.mask <- g.probs!=0 +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +plot(log(g.breaks.clean), log(g.probs.clean)) +g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) +summary(g.fit) +alpha.LM <- coef(g.fit)[2] +lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3) +################# Max-Log-Likelihood ################# +n <- length(g.breaks.clean) +kmin <- g.breaks.clean[1] +alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) +alpha.ML +lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3) +plot(log(g.breaks.clean), log(g.probs.clean)) +g.breaks.clean <- g.breaks[nz.probs.mask] +g.probs.clean <- g.probs[nz.probs.mask] +plot(log(g.breaks.clean), log(g.probs.clean)) +# Lab 9 for the University of Tulsa's CS-6643 Bioinformatics Course +# Pairwise Sequence Alignment with Dynamic Programming +# Professor: Dr. McKinney, Fall 2022 +# Noah L. Schrick - 1492657 +## Set Working Directory to file directory - RStudio approach +setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) +#### Part A: Specifying the Input +## Score Rules and Seqs +x_str <- "ATAC" # side sequence +y_str <- "GTGTAC" # top sequence +match_score <- 3 +mismatch_score <- -1 +gap_penalty <- -4 +## Substitution Matrix +dna.letters<-c("A","C","G","T") +num.letters <- length(dna.letters) +S<-data.frame(matrix(0,nrow=num.letters,ncol=num.letters)) # data frame +rownames(S)<-dna.letters; colnames(S)<-dna.letters +for (i in 1:4){ +for (j in 1:4){ +if(dna.letters[i]==dna.letters[j]){ +S[i,j]<- match_score +} +else{ +S[i,j]<- mismatch_score +} +} +} +len(S) +size(S) +nrows(S) +nrow(S) +col(S) +S +S[A][T] +S[A,T] +S +S[A] +S.A +S.at(A) +S[1.1] +S[1,1] +S["A", "T"] +dna.letters("A") +dna.letters +?index() +match("A", dna.letters) +match("T", dna.letters) +S[1,4] diff --git a/Schrick-Noah_CS-6643_Lab-9.R b/Schrick-Noah_CS-6643_Lab-9.R index f1cb545..6ed1de2 100644 --- a/Schrick-Noah_CS-6643_Lab-9.R +++ b/Schrick-Noah_CS-6643_Lab-9.R @@ -31,3 +31,21 @@ for (i in 1:4){ } } +#### Part B: Alignment Score Matrix (F) and Traceback Matrix (T) +x <- unlist(strsplit(x_str, "")) +y <- unlist(strsplit(y_str, "")) +x.len <- length(x) +y.len <- length(y) + +Fmat<-matrix(0,nrow=x.len+1,ncol=y.len+1) +Tmat<-Fmat # 0's to start + +rownames(Fmat)<-c("-",x); colnames(Fmat)<-c("-",y) +rownames(Tmat)<-c("-",x); colnames(Tmat)<-c("-",y) + +# create first row and column +Fmat[,1]<- seq(from=0,len=x.len+1,by=-abs(gap_penalty)) +Fmat[1,]<- seq(from=0,len=y.len+1,by=-abs(gap_penalty)) +Tmat[,1]<- rep(2,x.len+1) # 2 means align with a gap in the upper seq +Tmat[1,]<- rep(3,y.len+1) # 3 means align with a gap in the side seq + diff --git a/Schrick-Noah_CS-6643_Lab-9.docx b/Schrick-Noah_CS-6643_Lab-9.docx index 8c8a173..cb449ea 100644 Binary files a/Schrick-Noah_CS-6643_Lab-9.docx and b/Schrick-Noah_CS-6643_Lab-9.docx differ