Creating function for Traceback matrix walkback, and adding test input 3

This commit is contained in:
Noah L. Schrick 2022-11-17 02:03:46 -06:00
parent 5124a68d98
commit e23e98ed15
4 changed files with 525 additions and 461 deletions

922
.Rhistory
View File

@ -1,444 +1,3 @@
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.breaks[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1,2)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.breaks[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.breaks[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.breaks[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
#g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.breaks <- g.hist$breaks # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.breaks[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.probs[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
alpha.LM
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.probs[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.probs[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.probs[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
# Need to clean up probabilities that are 0
nz.probs.mask <- g.probs!=0
g.breaks.clean <- g.breaks[nz.probs.mask]
g.probs.clean <- g.probs[nz.probs.mask]
#plot(log(g.breaks.clean), log(g.probs.clean))
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
summary(g.fit)
alpha.LM <- coef(g.fit)[2]
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
################# Max-Log-Likelihood #################
n <- length(g.breaks.clean)
kmin <- g.breaks.clean[1]
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
alpha.ML
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
plot(yeast)
hist(yeast)
hist(g.vec)
g.pois
g.mean
alpha.LM
alpha.ML
degree(g)
sort(degree(g))
sort(degree(g),decreasing=FALSE)
sort(degree(g),decreasing=F)
sort(degree(g),decreasing=false)
sort(degree(g), decreasing = TRUE)
head(sort(degree(g), decreasing = TRUE))
stddev(degree(g))
sd(degree(g))
tail(sort(degree(g), decreasing = TRUE))
plot(log(g.breaks.clean), log(g.probs.clean))
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
# Degree Distribution
# Professor: Dr. McKinney, Spring 2022
# Noah Schrick - 1492657
library(igraph)
library(igraphdata)
data(yeast)
g <- yeast
g.netname <- "Yeast"
################# Set up Work #################
g.vec <- degree(g)
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
" Network"))
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
"#006CD1", "#E66100", "#D35FB7"))
g.mean <- mean(g.vec)
g.seq <- 0:max(g.vec) # x-axis
################# Guessing Alpha #################
alpha.guess <- 1.5
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
################# Poisson #################
g.pois <- dpois(g.seq, g.mean, log=F)
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
################# Linear model: Least-Squares Fit #################
g.breaks <- g.hist$breaks[-c(1)] # remove 0
g.probs <- g.hist$density[-1] # make lengths match
@ -489,24 +48,465 @@ S[i,j]<- mismatch_score
}
}
}
len(S)
size(S)
nrows(S)
nrow(S)
col(S)
S
S[A][T]
S[A,T]
S
S[A]
S.A
S.at(A)
S[1.1]
#### Part B: Alignment Score Matrix (F) and Traceback Matrix (T)
x <- unlist(strsplit(x_str, ""))
y <- unlist(strsplit(y_str, ""))
x.len <- length(x)
y.len <- length(y)
Fmat<-matrix(0,nrow=x.len+1,ncol=y.len+1)
Tmat<-Fmat # 0's to start
rownames(Fmat)<-c("-",x); colnames(Fmat)<-c("-",y)
rownames(Tmat)<-c("-",x); colnames(Tmat)<-c("-",y)
# create first row and column
Fmat[,1]<- seq(from=0,len=x.len+1,by=-abs(gap_penalty))
Fmat[1,]<- seq(from=0,len=y.len+1,by=-abs(gap_penalty))
Tmat[,1]<- rep(2,x.len+1) # 2 means align with a gap in the upper seq
Tmat[1,]<- rep(3,y.len+1) # 3 means align with a gap in the side seq
x
T
Tmat
Fmat
#### Part C: Building Fmat and Tmat
my.numbers <- c(7,9,-4)
max(my.numbers)
which.max(my.numbers)
#### Part C: Building Fmat and Tmat
my.numbers <- c(9,9,-4)
which.max(my.numbers)
S[1,1]
S["A", "T"]
dna.letters("A")
dna.letters
?index()
match("A", dna.letters)
match("T", dna.letters)
S[1,4]
S
S[1,2]
rowname(Fmat[i])
(Fmat[1])
(Fmat[2])
(Fmat[2,])
rownames(Fmat)
rownames(Fmat[1])
rownames(Fmat[2])
rownames(Fmat[2,1])
rownames(Fmat)[1]
rownames(Fmat)[2]
S[rownames(Fmat)[2], colnames(Fmat)[2])
S[rownames(Fmat)[2], colnames(Fmat)[2]]
#### Part C: Building Fmat and Tmat
for (i in 2:nrow(Fmat)){
for (j in 2:ncol(Fmat)){ # use F recursive rules
test_three_cases <- c(Fmat[i-1, j-1] + S[rownames(Fmat)[i], colnames(Fmat)[j]], # 1 mis/match
# Fmat[i-1, j] + gap_penalty, # 2 up-gap
Fmat[i, j-1] + gap_penalty) # 3 left-gap
Fmat[i,j]=max(test_three_cases)
Tmat[i,j]=which.max(test_three_cases)
}
}
final_score <- Fmat[nrow(Fmat),ncol(Fmat)]
Fmat
final_score
#### Part C: Building Fmat and Tmat
for (i in 2:nrow(Fmat)){
for (j in 2:ncol(Fmat)){ # use F recursive rules
test_three_cases <- c(Fmat[i-1, j-1] + S[rownames(Fmat)[i], colnames(Fmat)[j]], # 1 mis/match
Fmat[i-1, j] + gap_penalty, # 2 up-gap
Fmat[i, j-1] + gap_penalty) # 3 left-gap
Fmat[i,j]=max(test_three_cases)
Tmat[i,j]=which.max(test_three_cases)
}
}
final_score <- Fmat[nrow(Fmat),ncol(Fmat)]
Fmat
gap_penalty
Fmat[1,5]
Fmat[1,6]
Tmat
final_score
## Aligning from Tmat
m <- nrow(Fmat)
n <- ncol(Fmat)
top_seq <- list()
side_seq <- list()
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq.append(rownames(Tmat)[m])
side_seq.append("-")
m--
} else if (Tmat[m,n] == 2){
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq.append(rownames(Tmat)[m])
side_seq.append("-")
m--
}
else if (Tmat[m,n] == 2){
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq.append(rownames(Tmat)[m])
side_seq.append("-")
m--
}
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq.append(rownames(Tmat)[m])
side_seq.append("-")
m--
} else if (Tmat[m,n] == 2){
n <- n-1
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq.append(rownames(Tmat)[m])
side_seq.append("-")
m <- m-1
} else if (Tmat[m,n] == 2){
top_seq.append("-")
side_seq.append(colnames(Tmat)[n])
n <- n-1
} else{
top_seq.append(rownames(Tmat)[m])
side_seq.append(colnames(Tmat)[n])
m <- m-1
n <- n-1
}
}
while (m>0 && n>0){
if (Tmat[m,n] == 3){
top_seq <- append(top_seq, rownames(Tmat)[m])
side_seq <- append(side_seq, "-")
m <- m-1
} else if (Tmat[m,n] == 2){
top_seq <- append(top_seq, "-")
side_seq <- append(side_seq, colnames(Tmat)[n])
n <- n-1
} else{
top_seq <- append(top_seq, rownames(Tmat)[m])
side_seq <- append(side_seq, colnames(Tmat)[n])
m <- m-1
n <- n-1
}
}
top_seq
side_seq
top_seq[1]
paste(top_seq, collapse=',')
paste(top_seq, collapse=',')
paste(side_seq, collapse=',')
paste(rev(top_seq), collapse=',')
paste(rev(side_seq), collapse=',')
## Aligning from Tmat
m <- nrow(Fmat)
n <- ncol(Fmat)
m
Tmat[5,5]
rownames(Tmat)[5]
colnames(Tmat)[5]
n
rownames(Tmat)[5,7]
rownames(Tmat)[7]
colnames(Tmat)[7]
paste(rev(top_seq), collapse=',')
paste(rev(side_seq), collapse=',')
side_seq <- list()
top_seq <- list()
top_seq <- append(top_seq, rownames(Tmat)[m])
side_seq <- append(side_seq, colnames(Tmat)[n])
paste(rev(top_seq), collapse=',')
paste(rev(side_seq), collapse=',')
m <- m-1
n <- n-1
top_seq <- append(top_seq, rownames(Tmat)[m])
side_seq <- append(side_seq, colnames(Tmat)[n])
m <- m-1
n <- n-1
paste(rev(top_seq), collapse=',')
paste(rev(side_seq), collapse=',')
top_seq <- append(top_seq, rownames(Tmat)[m])
side_seq <- append(side_seq, colnames(Tmat)[n])
m <- m-1
n <- n-1
paste(rev(top_seq), collapse=',')
paste(rev(side_seq), collapse=',')
?rbind
curr_align_col <- rbind(x[n-1],y[m-1])
curr_align_col
## Aligning from Tmat
m <- nrow(Tmat)
n <- ncol(Tmat)
seq_align <- character()
while ((n+m) != 2){
if (Tmat[m,n] == 3){
curr_align_col <- rbind("-",y[m-1])
alignment <- cbind(curr_align_col,alignment)
m <- m-1
} else if (Tmat[m,n] == 2){
curr_align_col <- rbind(x[n-1],"-")
alignment <- cbind(curr_align_col,alignment)
n <- n-1
} else{
curr_align_col <- rbind(x[n-1], y[m-1])
alignment <- cbind(curr_align_col, alignment)
m <- m-1
n <- n-1
}
}
seq_align <- character()
while ((n+m) != 2){
if (Tmat[m,n] == 3){
curr_align_col <- rbind("-",y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
m <- m-1
} else if (Tmat[m,n] == 2){
curr_align_col <- rbind(x[n-1],"-")
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
} else{
curr_align_col <- rbind(x[n-1], y[m-1])
seq_align <- cbind(curr_align_col, seq_align)
m <- m-1
n <- n-1
}
}
?cbind
## Aligning from Tmat
n <- nrow(Tmat)
m <- ncol(Tmat)
seq_align <- character()
while ((n+m) != 2){
if (Tmat[m,n] == 3){
curr_align_col <- rbind("-",y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
m <- m-1
} else if (Tmat[m,n] == 2){
curr_align_col <- rbind(x[n-1],"-")
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
} else{
curr_align_col <- rbind(x[n-1], y[m-1])
seq_align <- cbind(curr_align_col, seq_align)
m <- m-1
n <- n-1
}
}
## Aligning from Tmat
m <- nrow(Tmat)
n <- ncol(Tmat)
seq_align <- character()
while ((n+m) != 2){
if (Tmat[m,n] == 3){
curr_align_col <- rbind("-",y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
m <- m-1
} else if (Tmat[m,n] == 2){
curr_align_col <- rbind(x[n-1],"-")
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
} else{
curr_align_col <- rbind(x[n-1], y[m-1])
seq_align <- cbind(curr_align_col, seq_align)
m <- m-1
n <- n-1
}
}
seq_align
curr_align_col
x
y
n
m
## Aligning from Tmat
n<-nrow(Tmat) # start at bottom right of Tmat
m<-ncol(Tmat)
alignment<-character()
while( (n+m)!=2 ){
if (Tmat[n,m]==1){
# subtract 1 from x and y indices because they are
# one row/col smaller than Tmat
curr_align_col <- rbind(x[n-1],y[m-1])
alignment <- cbind(curr_align_col,alignment)
n=n-1; m=m-1; # move back diagonally
}else if(Tmat[n,m]==2){
curr_align_col <- rbind(x[n-1],"-") # put gap in top seq
alignment <- cbind(curr_align_col,alignment)
n=n-1 # move up
}else{
curr_align_col <- rbind("-",y[m-1]) # put gap in side seq
alignment <- cbind(curr_align_col,alignment)
m=m-1 # move left
}
} # end while
alignment
## Aligning from Tmat
n <- nrow(Tmat)
m <- ncol(Tmat)
seq_align <- character()
while( (n+m)!=2 ){
if (Tmat[n,m]==1){
curr_align_col <- rbind(x[n-1],y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
m <- m-1
}else if(Tmat[n,m]==2){
curr_align_col <- rbind(x[n-1],"-") # put gap in top seq
seq_align <- cbind(curr_align_col,seq_align)
n=n-1 # move up
}else{
curr_align_col <- rbind("-",y[m-1]) # put gap in side seq
seq_align <- cbind(curr_align_col,seq_align)
m=m-1 # move left
}
} # end while
alignment
## Aligning from Tmat
n <- nrow(Tmat)
m <- ncol(Tmat)
seq_align <- character()
while( (n+m)!=2 ){
if (Tmat[n,m]==1){
curr_align_col <- rbind(x[n-1],y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
m <- m-1
}else if(Tmat[n,m]==2){
curr_align_col <- rbind(x[n-1],"-")
seq_align <- cbind(curr_align_col,seq_align)
n <- n-1
}else{
curr_align_col <- rbind("-",y[m-1])
seq_align <- cbind(curr_align_col,seq_align)
m <- m-1
}
} # end while
alignment
seq_align
#### Part D: Convert to functions
make.alignment.matrices <- function(x_str, y_str, match_score, mismatch_score,
gap_penalty){
## Substitution Matrix
dna.letters<-c("A","C","G","T")
num.letters <- length(dna.letters)
S<-data.frame(matrix(0,nrow=num.letters,ncol=num.letters)) # data frame
rownames(S)<-dna.letters; colnames(S)<-dna.letters
for (i in 1:4){
for (j in 1:4){
if(dna.letters[i]==dna.letters[j]){
S[i,j]<- match_score
}
else{
S[i,j]<- mismatch_score
}
}
}
## F Matrix and T Matrix
x <- unlist(strsplit(x_str, ""))
y <- unlist(strsplit(y_str, ""))
x.len <- length(x)
y.len <- length(y)
Fmat<-matrix(0,nrow=x.len+1,ncol=y.len+1)
Tmat<-Fmat # 0's to start
rownames(Fmat)<-c("-",x); colnames(Fmat)<-c("-",y)
rownames(Tmat)<-c("-",x); colnames(Tmat)<-c("-",y)
# create first row and column
Fmat[,1]<- seq(from=0,len=x.len+1,by=-abs(gap_penalty))
Fmat[1,]<- seq(from=0,len=y.len+1,by=-abs(gap_penalty))
Tmat[,1]<- rep(2,x.len+1) # 2 means align with a gap in the upper seq
Tmat[1,]<- rep(3,y.len+1) # 3 means align with a gap in the side seq
## Building Fmat and Tmat
for (i in 2:nrow(Fmat)){
for (j in 2:ncol(Fmat)){ # use F recursive rules
test_three_cases <- c(Fmat[i-1, j-1] + S[rownames(Fmat)[i], colnames(Fmat)[j]], # 1 mis/match
Fmat[i-1, j] + gap_penalty, # 2 up-gap
Fmat[i, j-1] + gap_penalty) # 3 left-gap
Fmat[i,j]=max(test_three_cases)
Tmat[i,j]=which.max(test_three_cases)
}
}
final_score <- Fmat[nrow(Fmat),ncol(Fmat)]
return(list(Fmat=Fmat, Tmat=Tmat, score_out=final_score))
}
# load new input
x_str2 <- "GATTA" # side sequence
y_str2 <- "GAATTC" # top sequence
match_score <- 2
mismatch_score <- -1
gap_penalty <- -2
align.list2 <- make.alignment.matrices(x_str2, y_str2, match_score,
mismatch_score, gap_penalty)
align.list2$Fmat
align.list2$Tmat
align.list2$score_out
if (!require("gplots")) install.packages("gplots")
library(gplots)
Fmat2 <- align.list2$Fmat
col = c("black","blue","red","yellow","green")
breaks = seq(min(Fmat2),max(Fmat2),len=length(col)+1)
heatmap.2(Fmat2[-1,-1], dendrogram='none', density.info="none",
Rowv=FALSE, Colv=FALSE, trace='none',
breaks = breaks, col = col,
sepwidth=c(0.01,0.01),
sepcolor="black",
colsep=1:ncol(Fmat2),
rowsep=1:nrow(Fmat2))
#### Part E: Traceback Matrix
show.alignment <- function(x_str,y_str,Tmat){
################ create the alignment
# input Tmat and the two sequences: x side seq and y is top seq
# make character vectors out of the strings
x<-unlist(strsplit(x_str,""))
y<-unlist(strsplit(y_str,""))
n<-nrow(Tmat) # start at bottom right of Tmat
m<-ncol(Tmat)
alignment<-character()
while( (n+m)!=2 ){
if (Tmat[n,m]==1){
# subtract 1 from x and y indices because they are
# one row/col smaller than Tmat
curr_align_col <- rbind(x[n-1],y[m-1])
alignment <- cbind(curr_align_col,alignment)
n=n-1; m=m-1; # move back diagonally
}else if(Tmat[n,m]==2){
curr_align_col <- rbind(x[n-1],"-") # put gap in top seq
alignment <- cbind(curr_align_col,alignment)
n=n-1 # move up
}else{
curr_align_col <- rbind("-",y[m-1]) # put gap in side seq
alignment <- cbind(curr_align_col,alignment)
m=m-1 # move left
}
} # end while
return(alignment)
} # end function
alignment2 <- show.alignment(x_str2,y_str2,align.list2$Tmat)
alignment2
write.table(alignment2,row.names=F,col.names=F,quote=F)
## Input 3
x_str3 <- "ATCGT" # side sequence
y_str3 <- "TGGTG" # top sequence
match_score <- 1
mismatch_score <- -2
gap_penalty <- -1
align.list3 <- make.alignment.matrices(x_str3, y_str3, match_score,
mismatch_score, gap_penalty)
align.list3$Fmat
align.list3$Tmat
align.list3$score_out
col = c("black","blue","red","yellow","green")
breaks = seq(min(Fmat3),max(Fmat3),len=length(col)+1)
heatmap.2(Fmat3[-1,-1], dendrogram='none', density.info="none",
Rowv=FALSE, Colv=FALSE, trace='none',
breaks = breaks, col = col,
sepwidth=c(0.01,0.01),
sepcolor="black",
colsep=1:ncol(Fmat3),
rowsep=1:nrow(Fmat3))
Fmat3 <- align.list3$Fmat
align.list3$Fmat
Fmat3 <- align.list3$Fmat
align.list3$Tmat
align.list3$score_out
o
heatmap.2(Fmat3[-1,-1], dendrogram='none', density.info="none",
Rowv=FALSE, Colv=FALSE, trace='none',
breaks = breaks, col = col,
sepwidth=c(0.01,0.01),
sepcolor="black",
colsep=1:ncol(Fmat3),
rowsep=1:nrow(Fmat3))
alignment3 <- show.alignment(x_str3,y_str3,align.list3$Tmat)
alignment3
write.table(alignment3,row.names=F,col.names=F,quote=F)

View File

@ -163,3 +163,67 @@ heatmap.2(Fmat2[-1,-1], dendrogram='none', density.info="none",
sepcolor="black",
colsep=1:ncol(Fmat2),
rowsep=1:nrow(Fmat2))
#### Part E: Traceback Matrix
show.alignment <- function(x_str,y_str,Tmat){
################ create the alignment
# input Tmat and the two sequences: x side seq and y is top seq
# make character vectors out of the strings
x<-unlist(strsplit(x_str,""))
y<-unlist(strsplit(y_str,""))
n<-nrow(Tmat) # start at bottom right of Tmat
m<-ncol(Tmat)
alignment<-character()
while( (n+m)!=2 ){
if (Tmat[n,m]==1){
# subtract 1 from x and y indices because they are
# one row/col smaller than Tmat
curr_align_col <- rbind(x[n-1],y[m-1])
alignment <- cbind(curr_align_col,alignment)
n=n-1; m=m-1; # move back diagonally
}else if(Tmat[n,m]==2){
curr_align_col <- rbind(x[n-1],"-") # put gap in top seq
alignment <- cbind(curr_align_col,alignment)
n=n-1 # move up
}else{
curr_align_col <- rbind("-",y[m-1]) # put gap in side seq
alignment <- cbind(curr_align_col,alignment)
m=m-1 # move left
}
} # end while
return(alignment)
} # end function
alignment2 <- show.alignment(x_str2,y_str2,align.list2$Tmat)
alignment2
write.table(alignment2,row.names=F,col.names=F,quote=F)
## Input 3
x_str3 <- "ATCGT" # side sequence
y_str3 <- "TGGTG" # top sequence
match_score <- 1
mismatch_score <- -2
gap_penalty <- -1
align.list3 <- make.alignment.matrices(x_str3, y_str3, match_score,
mismatch_score, gap_penalty)
align.list3$Fmat
Fmat3 <- align.list3$Fmat
align.list3$Tmat
align.list3$score_out
col = c("black","blue","red","yellow","green")
breaks = seq(min(Fmat3),max(Fmat3),len=length(col)+1)
heatmap.2(Fmat3[-1,-1], dendrogram='none', density.info="none",
Rowv=FALSE, Colv=FALSE, trace='none',
breaks = breaks, col = col,
sepwidth=c(0.01,0.01),
sepcolor="black",
colsep=1:ncol(Fmat3),
rowsep=1:nrow(Fmat3))
alignment3 <- show.alignment(x_str3,y_str3,align.list3$Tmat)
alignment3
write.table(alignment3,row.names=F,col.names=F,quote=F)

Binary file not shown.

Binary file not shown.