Finalizing primary structure and DNA palindromes
This commit is contained in:
parent
87cdbb803b
commit
f0734d976a
512
.Rhistory
Normal file
512
.Rhistory
Normal file
@ -0,0 +1,512 @@
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1,2)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
#g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.breaks <- g.hist$breaks # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
alpha.LM
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(yeast)
|
||||
hist(yeast)
|
||||
hist(g.vec)
|
||||
g.pois
|
||||
g.mean
|
||||
alpha.LM
|
||||
alpha.ML
|
||||
degree(g)
|
||||
sort(degree(g))
|
||||
sort(degree(g),decreasing=FALSE)
|
||||
sort(degree(g),decreasing=F)
|
||||
sort(degree(g),decreasing=false)
|
||||
sort(degree(g), decreasing = TRUE)
|
||||
head(sort(degree(g), decreasing = TRUE))
|
||||
stddev(degree(g))
|
||||
sd(degree(g))
|
||||
tail(sort(degree(g), decreasing = TRUE))
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# Lab 7 for the University of Tulsa's CS-6643 Bioinformatics Course
|
||||
# PDB
|
||||
# Professor: Dr. McKinney, Fall 2022
|
||||
# Noah L. Schrick - 1492657
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
#### Part A: Obtaining PDB - no supporting R Code
|
||||
#### Part B: Visualize the 3D structure
|
||||
## Install Rpdb and load the pdb
|
||||
if (!require("Rpdb")) install.packages("Rpdb")
|
||||
library(Rpdb)
|
||||
x<-read.pdb("1TGH.pdb")
|
||||
## Visualize the B and C chains
|
||||
B_chain_pdb <- subset(x$atoms, x$atoms$chainid=="B")
|
||||
# Lab 7 for the University of Tulsa's CS-6643 Bioinformatics Course
|
||||
# PDB
|
||||
# Professor: Dr. McKinney, Fall 2022
|
||||
# Noah L. Schrick - 1492657
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
#### Part A: Obtaining PDB - no supporting R Code
|
||||
#### Part B: Visualize the 3D structure
|
||||
## Install Rpdb and load the pdb
|
||||
if (!require("Rpdb")) install.packages("Rpdb")
|
||||
library(Rpdb)
|
||||
x<-read.pdb("1TGH.pdb")
|
||||
natom(x)
|
||||
visualize(x,type="l")
|
||||
## Visualize the B and C chains
|
||||
B_chain_pdb <- subset(x$atoms, x$atoms$chainid=="B")
|
||||
C_chain_pdb <- subset(x$atoms, x$atoms$chainid=="C")
|
||||
# remove water:
|
||||
C_chain_pdb <- subset(C_chain_pdb,C_chain_pdb$resname!="HOH")
|
||||
# visualize chains B and C
|
||||
BC_chains_pdb <- subset(x$atoms, x$atoms$chainid=="B" | x$atoms$chainid=="C")
|
||||
color.vec <- c(rep("red",natom(B_chain_pdb)),rep("green",natom(C_chain_pdb)))
|
||||
visualize(BC_chains_pdb,col=color.vec)
|
||||
addResLab(BC_chains_pdb)
|
||||
rgl.postscript("BC_chains.pdf","pdf",drawText=TRUE)
|
||||
## Visualize B-C and A Chains
|
||||
A_chain_pdb <- subset(x$atoms, x$atoms$chainid=="A")
|
||||
# remove water
|
||||
A_chain_pdb <- subset(A_chain_pdb, A_chain_pdb$resname!="HOH")
|
||||
# visualize complex complex
|
||||
BCA_chains_pdb <- subset(x$atoms, x$atoms$chainid=="B" |
|
||||
x$atoms$chainid=="C" | x$atoms$chainid=="A")
|
||||
BCA.color.vec <- c(rep("red",natom(B_chain_pdb)),rep("green",natom(C_chain_pdb)),rep("blue",natom(A_chain_pdb)))
|
||||
visualize(BCA_chains_pdb,col=BCA.color.vec)
|
||||
rgl.postscript("full_complex.pdf","pdf",drawText=TRUE)
|
||||
# get coordinates of C1' atoms of the C-chain DNA molecule
|
||||
C_chain_pdb$resname
|
||||
C_chain_resids<-unique(C_chain_pdb$resid)
|
||||
C_chain_C1prime <- subset(C_chain_pdb, C_chain_pdb$elename=="C1'")
|
||||
# get chain C DNA sequence
|
||||
C_chain_sequence_messy <- C_chain_C1prime$resname
|
||||
C_chain_sequence <- paste(sapply(C_chain_sequence_messy,function(x) {unlist(strsplit(x,""))[2]}),collapse = "")
|
||||
C_chain_sequence_messy
|
||||
C_chain_sequence
|
||||
@ -1 +1 @@
|
||||
,noah,NovaArchSys,27.10.2022 13:09,file:///home/noah/.config/libreoffice/4;
|
||||
,noah,NovaArchSys,27.10.2022 15:21,file:///home/noah/.config/libreoffice/4;
|
||||
@ -40,3 +40,24 @@ BCA_chains_pdb <- subset(x$atoms, x$atoms$chainid=="B" |
|
||||
BCA.color.vec <- c(rep("red",natom(B_chain_pdb)),rep("green",natom(C_chain_pdb)),rep("blue",natom(A_chain_pdb)))
|
||||
|
||||
visualize(BCA_chains_pdb,col=BCA.color.vec)
|
||||
|
||||
#### Part C: Primary structure and DNA Palindromes
|
||||
# get coordinates of C1' atoms of the C-chain DNA molecule
|
||||
C_chain_pdb$resname
|
||||
C_chain_resids<-unique(C_chain_pdb$resid)
|
||||
C_chain_C1prime <- subset(C_chain_pdb, C_chain_pdb$elename=="C1'")
|
||||
|
||||
# get chain C DNA sequence
|
||||
C_chain_sequence_messy <- C_chain_C1prime$resname
|
||||
C_chain_sequence <- paste(sapply(C_chain_sequence_messy,function(x) {unlist(strsplit(x,""))[2]}),collapse = "")
|
||||
|
||||
## Find palindromes
|
||||
if (!require("BiocManager")) install.packages("BiocManager")
|
||||
library(BiocManager)
|
||||
if (!require("Biostrings")) BiocManager::install("Biostrings")
|
||||
library(snpStats)
|
||||
|
||||
C_chain_DNAString <- DNAString(C_chain_sequence)
|
||||
dna.pals <- findPalindromes(C_chain_DNAString, min.armlength=3,
|
||||
max.looplength=5, max.mismatch = 0)
|
||||
|
||||
|
||||
BIN
pdb_lab.docx
BIN
pdb_lab.docx
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user