# Lab 6 for the University of Tulsa's CS-6643 Bioinformatics Course # GWAS # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### Part 0: PLINK if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("snpStats")) BiocManager::install("snpStats") library(snpStats) ex.data <- read.pedfile(file="extra.ped", snps="extra.map") ex.data$fam phenotype <- ex.data$fam$affected-1 # change pheno from 1/2 to 0/1 genotypes <- ex.data$genotypes # encoded as AA/AB/BB snp.ids <- as.character(ex.data$map$snp.names) genotypes.df <- data.frame(as(genotypes, "character")) colnames(genotypes.df) <- snp.ids # observed contingency table for SNP rs630969 table(phenotype,genotypes.df$rs630969, dnn=c("phenotype","genotype")) # dnn dimension names of table dim(genotypes.df) #### Part A: Chi-Square Test # creates list of observed contingency tables for all SNPs # sapply acts on each column of genotypes.df observed.tables.list <- sapply(genotypes.df, function(x) table(phenotype,x,dnn=c("phenotype","genotype"))) test.table <- observed.tables.list$rs634228 genoMarg.vec <- colSums(test.table) # margin vector phenoMarg.vec <- rowSums(test.table) # margin vector totalSubj <- sum(genoMarg.vec) # total subjects expect.test <- outer(phenoMarg.vec,genoMarg.vec/totalSubj,'*') ## Fisher Test # Fisher exact test (chi-square test) for all SNPs fish_fn <- function(i){ cbind(snp.ids[i], fisher.test(observed.tables.list[[i]])$p.value) } # apply fisher exact test to all SNPs fish.df <- data.frame(t(sapply(1:ncol(genotypes.df), fish_fn))) colnames(fish.df) <- c("rs", "p_value") # sort SNPs by Fisher exact p-value if (!require("dplyr")) install.packages("dplyr") library(dplyr) fish.results <- fish.df %>% mutate_at("p_value", as.character) %>% mutate_at("p_value", as.numeric) %>% arrange(p_value) print(fish.results) #### Part B: Logistic regression with genotypes if (!require("ggplot2")) BiocManager::install("ggplot2") library(ggplot2) i<-8 A1<-ex.data$map$allele.1[i] A2<-ex.data$map$allele.2[i] geno.labels <- c(paste(A1,A1,sep=""),paste(A1,A2,sep=""),paste(A2,A2,sep="")) ## Plot with ggplot2 # data from the one SNP oneSNP.df <- data.frame(cbind(genotypes.df[[i]],as.numeric(phenotype))) colnames(oneSNP.df) <- c("genotypes","phenotypes") lr.plot <- ggplot(oneSNP.df, aes(x=genotypes, y=phenotypes)) + geom_point(position = position_jitter(w = 0.1, h = 0.1)) + # stat_smooth plots the probability based on the model stat_smooth(method="glm", method.args = list(family = "binomial")) #+ #xlim(geno.labels) + ggtitle(snp.ids[i]) print(lr.plot) ## Fit a logistic regression model of phenotype with SNP in the 8th column if (!require("broom")) install.packages("broom") library(broom) # for tidy function pheno.factor <- factor(phenotype,labels=c(0,1)) i<-8 lr <- glm(pheno.factor~genotypes.df[[i]],family=binomial) td.lr <- tidy(lr) pval_vec <- td.lr$p.value # vector of $p.value from td.lr coef_vec <- td.lr$estimate # vector of $estimate cbind(snp.ids[i], coef_vec[1], coef_vec[2], coef_vec[3], pval_vec[1], pval_vec[2], pval_vec[3]) ## Turn into function to repeat for all SNPs LR.fn <- function(i){ lr <- glm(pheno.factor~genotypes.df[[i]],family=binomial) td.lr <- tidy(lr) pval_vec <- td.lr$p.value # vector of $p.value from td.lr coef_vec <- td.lr$estimate # vector of $estimate cbind(snp.ids[i], coef_vec[1], coef_vec[2], coef_vec[3], pval_vec[1], pval_vec[2], pval_vec[3]) } # apply Logistic Regression model to all SNPs LRresults.df <- data.frame(t(sapply(1:ncol(genotypes.df), LR.fn))) # add column names to results data frame colnames(LRresults.df) <- c("rs", "AAintercept", "ABcoef", "BBcoef", "AA.pval", "AB.pval", "BB.pval") # The following sorts LR results by the p-value of the BB # homozygous coefficient. tidy made $p_value a factor and when you try to # convert directly to numeric (as.numeric) turns factors into integer and # this messes up sorting especially with scientific notation lr.results.sorted <- LRresults.df %>% mutate_at("BB.pval", as.character) %>% # convert to char before numeric mutate_at("BB.pval", as.numeric) %>% # convert to numeric for arrange arrange(BB.pval) # sort as.matrix(lr.results.sorted %>% pull(rs,BB.pval)) ## Comparing Rankings # Via Table data.frame(fish.results$rs, lr.results.sorted$rs) # Via Plot yvals <- 1:length(fish.results$rs) xvals <- snp.ids fishvals <- match(fish.results$rs, snp.ids) lrvals <- match(lr.results.sorted$rs, snp.ids) plot(1:length(fish.results$rs), fishvals, type="l", xaxt="none", xlab="snp", ylab="rank", lty=1, col=1) axis(side = 1, at = 1:length(fish.results$rs), labels=snp.ids) lines(1:length(lr.results.sorted$rs), lrvals, type="l", col=2, lty=2, lwd=2) legend(x="topright", legend=c("Chi-Square Fisher Test", "Logistic Regression"), lty=c(1,2), col=c(1,2))