# Lab 5 for the University of Tulsa's CS-6643 Bioinformatics Course # Gene Expression Statistical Learning # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### 0: Process and filter data # load gene expression data load("sense.filtered.cpm.Rdata") # setwd! # load phenotype (mdd/hc) data subject.attrs <- read.csv("Demographic_symptom.csv", stringsAsFactors = FALSE) if (!require("dplyr")) install.packages("dplyr") library(dplyr) # grab intersecting X (subject ids) and Diag (Diagnosis) from columns phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) mddPheno <- as.factor(phenos.df$Diag) # Normalized and transform if (!require("preprocessCore")) install.packages("preprocessCore") library(preprocessCore) mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm) mddExprData_quantileLog2 <- log2(mddExprData_quantile) # attach phenotype names and gene names to data colnames(mddExprData_quantileLog2) <- mddPheno rownames(mddExprData_quantileLog2) <- rownames(sense.filtered.cpm) # coefficient of variation filter sd(x)/abs(mean(x)) CoV_values <- apply(mddExprData_quantileLog2,1, function(x) {sd(x)/abs(mean(x))}) # smaller threshold, the higher the experimental effect relative to the # measurement precision sum(CoV_values<.045) # there is one gene that has 0 variation -- remove sd_values <- apply(mddExprData_quantileLog2,1, function(x) {sd(x)}) rownames(mddExprData_quantileLog2)[sd_values==0] # filter the data matrix GxS.covfilter <- mddExprData_quantileLog2[CoV_values<.045 & sd_values>0,] dim(GxS.covfilter) # convert phenotype to factor pheno.factor <- as.factor(colnames(GxS.covfilter)) pheno.factor str(pheno.factor) levels(pheno.factor)