Data pre-processing
This commit is contained in:
parent
abf696c4e4
commit
abe72f45da
1
.~lock.lab5_expression3.docx#
Normal file
1
.~lock.lab5_expression3.docx#
Normal file
@ -0,0 +1 @@
|
||||
,noah,NovaArchSys,13.10.2022 15:00,file:///home/noah/.config/libreoffice/4;
|
||||
51
Schrick-Noah_CS-6643_Lab-5.R
Normal file
51
Schrick-Noah_CS-6643_Lab-5.R
Normal file
@ -0,0 +1,51 @@
|
||||
# Lab 5 for the University of Tulsa's CS-6643 Bioinformatics Course
|
||||
# Gene Expression Statistical Learning
|
||||
# Professor: Dr. McKinney, Fall 2022
|
||||
# Noah L. Schrick - 1492657
|
||||
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
|
||||
#### 0: Process and filter data
|
||||
# load gene expression data
|
||||
load("sense.filtered.cpm.Rdata") # setwd!
|
||||
|
||||
# load phenotype (mdd/hc) data
|
||||
subject.attrs <- read.csv("Demographic_symptom.csv",
|
||||
stringsAsFactors = FALSE)
|
||||
|
||||
if (!require("dplyr")) install.packages("dplyr")
|
||||
library(dplyr)
|
||||
# grab intersecting X (subject ids) and Diag (Diagnosis) from columns
|
||||
phenos.df <- subject.attrs %>%
|
||||
filter(X %in% colnames(sense.filtered.cpm)) %>%
|
||||
dplyr::select(X, Diag)
|
||||
mddPheno <- as.factor(phenos.df$Diag)
|
||||
|
||||
# Normalized and transform
|
||||
if (!require("preprocessCore")) install.packages("preprocessCore")
|
||||
library(preprocessCore)
|
||||
mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm)
|
||||
mddExprData_quantileLog2 <- log2(mddExprData_quantile)
|
||||
# attach phenotype names and gene names to data
|
||||
colnames(mddExprData_quantileLog2) <- mddPheno
|
||||
rownames(mddExprData_quantileLog2) <- rownames(sense.filtered.cpm)
|
||||
|
||||
# coefficient of variation filter sd(x)/abs(mean(x))
|
||||
CoV_values <- apply(mddExprData_quantileLog2,1,
|
||||
function(x) {sd(x)/abs(mean(x))})
|
||||
# smaller threshold, the higher the experimental effect relative to the
|
||||
# measurement precision
|
||||
sum(CoV_values<.045)
|
||||
# there is one gene that has 0 variation -- remove
|
||||
sd_values <- apply(mddExprData_quantileLog2,1, function(x) {sd(x)})
|
||||
rownames(mddExprData_quantileLog2)[sd_values==0]
|
||||
# filter the data matrix
|
||||
GxS.covfilter <- mddExprData_quantileLog2[CoV_values<.045 & sd_values>0,]
|
||||
dim(GxS.covfilter)
|
||||
|
||||
# convert phenotype to factor
|
||||
pheno.factor <- as.factor(colnames(GxS.covfilter))
|
||||
pheno.factor
|
||||
str(pheno.factor)
|
||||
levels(pheno.factor)
|
||||
Loading…
x
Reference in New Issue
Block a user