# Lab 4 for the University of Tulsa's CS-6643 Bioinformatics Course # Differential Expression # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### Part A: Preparing Data load("sense.filtered.cpm.Rdata") # load phenotype (mdd/hc) data subject.attrs <- read.csv("Demographic_symptom.csv", stringsAsFactors = FALSE) if (!require("dplyr")) install.packages("dplyr") library(dplyr) # grab intersecting X (subject ids) and Diag (Diagnosis) from columns phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) mddPheno <- as.factor(phenos.df$Diag) # Normalized and transform if (!require("preprocessCore")) install.packages("preprocessCore") library(preprocessCore) mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm) mddExprData_quantileLog2 <- log2(mddExprData_quantile) # attach phenotype names and gene names to data colnames(mddExprData_quantileLog2) <- mddPheno rownames(mddExprData_quantileLog2) <- rownames(sense.filtered.cpm) length(rownames(sense.filtered.cpm)) #### Part B: Filter noise genes # coefficient of variation filter sd(x)/abs(mean(x)) CoV_values <- apply(mddExprData_quantileLog2,1, function(x) {sd(x)/abs(mean(x))}) # smaller threshold, the higher the experimental effect relative to the # measurement precision sum(CoV_values<.045) # there is one gene that has 0 variation -- remove sd_values <- apply(mddExprData_quantileLog2,1, function(x) {sd(x)}) rownames(mddExprData_quantileLog2)[sd_values==0] # filter the data matrix GxS.covfilter <- mddExprData_quantileLog2[CoV_values<.045 & sd_values>0,] dim(GxS.covfilter) #### Part C: Differential Expression with t-tests # convert phenotype pheno.factor <- as.factor(colnames(GxS.covfilter)) pheno.factor str(pheno.factor) levels(pheno.factor) ## Run t-tests myrow <- 2 # first pick a gene row index to test mygene<-rownames(GxS.covfilter)[myrow] mygene # a. traditional R interface mdd <- GxS.covfilter[myrow,pheno.factor=="MDD"] hc <- GxS.covfilter[myrow,pheno.factor=="HC"] t.result <- t.test(mdd,hc) t.result # b. formula interface ~ saves a step t.result <- t.test(GxS.covfilter[myrow,] ~ pheno.factor) t.result p <- t.result$p.value t.result$statistic ## Plot the Data if (!require("ggplot2")) install.packages("ggplot2") library(ggplot2) # create data frame for gene mygene.data.df <- data.frame(gene=GxS.covfilter[myrow,],phenotype=pheno.factor) # boxplot p <- ggplot(mygene.data.df, aes(x=phenotype, y=gene, fill=phenotype)) + stat_boxplot(geom ='errorbar') + geom_boxplot() p <- p + xlab("MDD versus HC") + ylab(mygene) p #### Part D: t-test for all filtered genes # Put it all together into a function to run in loop. # First write a function that computes t-test for one gene. # i is the data row for the gene ttest_fn <- function(i){ mygene <- rownames(GxS.covfilter)[i] t.result <- t.test(GxS.covfilter[i,] ~ pheno.factor) tstat <- t.result$statistic pval <- t.result$p.value # return vector of three things for each gene c(mygene, tstat, pval) } # Testing on the second gene ttest_fn(2) ## Testing on the rest: # initialize an empty matrix to store the results ttest_allgene.mat <- matrix(0,nrow=nrow(GxS.covfilter), ncol=3) # run analysis on all gene rows for (i in 1:nrow(GxS.covfilter)){ ttest_allgene.mat[i,] <- ttest_fn(i) } # convert matrix to data frame and colnames ttest_allgene.df <- data.frame(ttest_allgene.mat) colnames(ttest_allgene.df) <- c("gene ", "t.stat", "p.val") # sort based on p-value ttest_allgene.sorted <- ttest_allgene.df %>% mutate_at("p.val", as.character) %>% mutate_at("p.val", as.numeric) %>% arrange(p.val) # sort ttest_allgene.sorted[1:10,] # look at top 10 ## Plot the result of the top gene # create data frame for gene myrow <- which(ttest_allgene.df$gene==ttest_allgene.sorted[1,1]) mygene<-rownames(GxS.covfilter)[myrow] mytopgene.data.df <- data.frame(mygene=GxS.covfilter[myrow,], phenotype=pheno.factor) # boxplot p <- ggplot(mytopgene.data.df, aes(x=phenotype, y=mygene, fill=phenotype)) + stat_boxplot(geom ='errorbar') + geom_boxplot() p <- p + xlab("MDD versus HC") + ylab(mygene) p #### Part E: Interpretation of top genes top_cutoff <- 200 top_genes <- as.character(ttest_allgene.sorted[1:top_cutoff,1]) write.table(top_genes, sep="\t", file="", quote=F, row.names=F, col.names=F) #### Optional 1: Identify Outliers mddCorr<-cor(GxS.covfilter) # distance based on correlation d <- sqrt(1-mddCorr) dim(d) rownames(d) mddTree = hclust(as.dist(d)) mddTree$labels <- phenos.df$X plot(mddTree) #### Optional 2: Compare MDS and UMAP clustering if (!require("umap")) install.packages("umap") library(umap) # change umap config parameters custom.config = umap.defaults custom.config$random_state = 123 custom.config$n_epochs = 500 SxG.df <- data.frame(t(GxS.covfilter)) obs_mds = cmdscale(d, k=2) #add colors for MDD/HC colors = rep("black",nrow(SxG.df)) colors[startsWith(rownames(SxG.df),"MDD")] <- "red" plot(obs_mds, col=colors, main="mds of observations", xlab="mds dim1", ylab="mds dim2") obs_umap = umap(SxG.df, config=custom.config) #add colors for MDD/HC colors = rep("black",nrow(SxG.df)) colors[startsWith(rownames(SxG.df),"MDD")] <- "red" plot(obs_umap$layout, col=colors, main="umap of observations", xlab="umap dim1", ylab="umap dim2") #### Optional 3: WGCNA and UMAP of Genes if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("WGCNA")) BiocManager::install("WGCNA") library(WGCNA) # change umap config parameters custom.config = umap.defaults custom.config$random_state = 123 custom.config$n_epochs = 50 custom.config$n_neighbors=30 custom.config$metric = "pearson" custom.config$input = "dist" custom.config$a = 9.5 custom.config$b = 0.5 GxS.df <- data.frame(GxS.covfilter) obs_umap = umap(GxS.df, config=custom.config) #add colors for MDD/HC colors = rep("black",nrow(GxS.df)) colors[startsWith(colnames(GxS.df),"MDD")] <- "red" plot(obs_umap$layout, col=colors, main="umap of observations", xlab="umap dim1", ylab="umap dim2") # Plot the dendrogram and colors underneath num.clust <- 2 mddCuts <- cutree(mddTree,k=num.clust) sizeGrWindow(8,6) dynamicMods = cutreeDynamic(dendro = mddTree, distM = d, deepSplit = 2, pamRespectsDendro = FALSE, minClusterSize = 2, method = "hybrid") mddColors = labels2colors(dynamicMods) table(mddColors) mddColorstable <- table(mddColors,names(mddCuts)) prop.table(mddColorstable, margin = 1) plotDendroAndColors(mddTree, mddColors, "Dynamic Clusters", dendroLabels = NULL, # hang = -1, addGuide = TRUE, #guideHang = 0.05, main = "Clustering with WGCNA")