# Lab 3 for the University of Tulsa's CS-6643 Bioinformatics Course # Expression Exploratory Analysis # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### Part A: Loading Data ## 1: Loading Gene Expression Data load("sense.filtered.cpm.Rdata") dim(sense.filtered.cpm) colnames(sense.filtered.cpm) ## 2: Demographic Data # Loading subject.attrs <- read.csv("Demographic_symptom.csv", stringsAsFactors = FALSE) dim(subject.attrs) # 160 subjects x 40 attributes colnames(subject.attrs) # interested in X (sample ids) and Diag (diagnosis) subject.attrs$X subject.attrs$Diag # Matching gene expression samples with their diagnosis if (!require("dplyr")) install.packages("dplyr") library(dplyr) # create a phenotype vector # grab X (subject ids) and Diag (Diagnosis) from subject.attrs that # intersect %in% with the RNA-Seq data phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) colnames(phenos.df) # $Diag is mdd diagnosis # grab Diag column and convert character to factor mddPheno <- as.factor(phenos.df$Diag) # this is our phenotype/class vector summary(mddPheno) # MDD -- major depressive disorder, HC -- healthy control #### Part B: Normalization ## 1: log2 transformation # raw cpm boxplots and histogram of one sample boxplot(sense.filtered.cpm,range=0, ylab="raw probe intensity", main="Raw", names=mddPheno) hist(sense.filtered.cpm[,1], freq=F, ylab="density", xlab="raw probe intensity", main="Raw Data Density for Sample 1") # log2 transformed boxplots and histogram boxplot(log2(sense.filtered.cpm), range=0, ylab="log2 intensity", main="Log2 Transformed", names=mddPheno) hist(log2(sense.filtered.cpm[,1]), freq=F, ylab="density", xlab="log2 probe intensity", main="log2 Data Density for Sample 1") getmode <- function(v) { uniqv <-unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] } data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), mean(log2(sense.filtered.cpm[,1]))), Mode = c(getmode(sense.filtered.cpm[,1]), getmode(log2(sense.filtered.cpm[,1]))), Median = c(median(sense.filtered.cpm[,1])) ) rownames(data) = c("Original", "Log2 Transformed") data ## 2: Quantile Normalization # install quantile normalize #install.packages("BiocManager") if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("preprocessCore")) BiocManager::install("preprocessCore") library(preprocessCore) # replace with custom function? # apply quantile normalization mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm) boxplot(mddExprData_quantile,range=0, ylab="raw intensity", main="Quantile Normalized") head(mddExprData_quantile) ## 3: Log2 on quantile normalized data mddExprData_quantileLog2 <- log2(mddExprData_quantile) # add phenotype names to matrix colnames(mddExprData_quantileLog2) <- mddPheno boxplot(mddExprData_quantileLog2,range=0, ylab="log2 intensity", main="Quantile Normalized Log2") hist(log2(mddExprData_quantileLog2[,1]), freq=F, ylab="density", xlab="log2 probe intensity", main="log2 Quantile Normalized for Sample 1") ## 4: Means mean(mddExprData_quantileLog2[,1]) colMeans(mddExprData_quantileLog2)