g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.breaks[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.breaks[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# #g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.breaks <- g.hist$breaks # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.breaks[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) alpha.LM # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] #plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3) plot(yeast) hist(yeast) hist(g.vec) g.pois g.mean alpha.LM alpha.ML degree(g) sort(degree(g)) sort(degree(g),decreasing=FALSE) sort(degree(g),decreasing=F) sort(degree(g),decreasing=false) sort(degree(g), decreasing = TRUE) head(sort(degree(g), decreasing = TRUE)) stddev(degree(g)) sd(degree(g)) tail(sort(degree(g), decreasing = TRUE)) plot(log(g.breaks.clean), log(g.probs.clean)) # Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course # Degree Distribution # Professor: Dr. McKinney, Spring 2022 # Noah Schrick - 1492657 library(igraph) library(igraphdata) data(yeast) g <- yeast g.netname <- "Yeast" ################# Set up Work ################# g.vec <- degree(g) g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname, " Network")) legend("topright", c("Guess", "Poisson", "Least-Squares Fit", "Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6", "#006CD1", "#E66100", "#D35FB7")) g.mean <- mean(g.vec) g.seq <- 0:max(g.vec) # x-axis ################# Guessing Alpha ################# alpha.guess <- 1.5 lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3) ################# Poisson ################# g.pois <- dpois(g.seq, g.mean, log=F) lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3) ################# Linear model: Least-Squares Fit ################# g.breaks <- g.hist$breaks[-c(1)] # remove 0 g.probs <- g.hist$density[-1] # make lengths match # Need to clean up probabilities that are 0 nz.probs.mask <- g.probs!=0 g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] plot(log(g.breaks.clean), log(g.probs.clean)) g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean)) summary(g.fit) alpha.LM <- coef(g.fit)[2] lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3) ################# Max-Log-Likelihood ################# n <- length(g.breaks.clean) kmin <- g.breaks.clean[1] alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin)) alpha.ML lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3) plot(log(g.breaks.clean), log(g.probs.clean)) g.breaks.clean <- g.breaks[nz.probs.mask] g.probs.clean <- g.probs[nz.probs.mask] plot(log(g.breaks.clean), log(g.probs.clean)) # load gene expression data load("sense.filtered.cpm.Rdata") ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) # load gene expression data load("sense.filtered.cpm.Rdata") dim(sense.filtered.cpm) colnames(sense.filtered.cpm) length(sense.filtered.cpm) ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) ## 2: Loading Demographic Data subject.attrs <- read.csv("Demographic_symptom.csv", stringsAsFactors = FALSE) dim(subject.attrs) # 160 subjects x 40 attributes colnames(subject.attrs) # interested in X (sample ids) and Diag (diagnosis) subject.attrs$X subject.attrs$Diag dim(sense.filtered.cpm) colnames(sense.filtered.cpm) rownames(sense.filtered.cpm) # Matching gene expression samples with their diagnosis if (!require("dplyr")) install.packages("dplyr") # Matching gene expression samples with their diagnosis if (!require("dplyr")) install.packages("dplyr") # create a phenotype vector # grab X (subject ids) and Diag (Diagnosis) from subject.attrs that # intersect %in% with the RNA-Seq data phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) # Matching gene expression samples with their diagnosis if (!require("dplyr")) install.packages("dplyr") # create a phenotype vector # grab X (subject ids) and Diag (Diagnosis) from subject.attrs that # intersect %in% with the RNA-Seq data phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) library(dplyr) # create a phenotype vector # grab X (subject ids) and Diag (Diagnosis) from subject.attrs that # intersect %in% with the RNA-Seq data phenos.df <- subject.attrs %>% filter(X %in% colnames(sense.filtered.cpm)) %>% dplyr::select(X, Diag) colnames(phenos.df) # $Diag is mdd diagnosis # grab Diag column and convert character to factor mddPheno <- as.factor(phenos.df$Diag) # this is our phenotype/class vector summary(mddPheno) # MDD -- major depressive disorder, HC -- healthy control #### Part B: Normalization ## 1: log2 transformation # raw cpm boxplots and histogram of one sample boxplot(sense.filtered.cpm,range=0, ylab="raw probe intensity", main="Raw", names=mddPheno) # log2 transformed boxplots and histogram boxplot(log2(sense.filtered.cpm), range=0, ylab="log2 intensity", main="Log2 Transformed", names=mddPheno) hist(sense.filtered.cpm[,1], freq=F, ylab="density", xlab="raw probe intensity", main="Raw Data Density for Sample 1") hist(log2(sense.filtered.cpm[,1]), freq=F, ylab="density", xlab="log2 probe intensity", main="log2 Data Density for Sample 1") median(sense.filtered.cpm[,1]) mode(sense.filtered.cpm[,1]) average(sense.filtered.cpm[,1]) mean(sense.filtered.cpm[,1]) getmode <- function(v) { uniqv <-unique(v) uniqv[which.max(tabulate(match(v, uniqv)))] } getmode(sense.filtered.cpm[,1]) median(sense.filtered.cpm[,1]) mean(sense.filtered.cpm[,1]) getmode(sense.filtered.cpm) median(sense.filtered.cpm) mean(sense.filtered.cpm) getmode(log2(sense.filtered.cpm)) median(log2(sense.filtered.cpm)) mean(log2(sense.filtered.cpm)) log2(sense.filtered.cpm) log2(sense.filtered.cpm[,1]) getmode(log2(sense.filtered.cpm[,1])) median(log2(sense.filtered.cpm[,1])) mean(log2(sense.filtered.cpm[,1])) data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), mean(log2(sense.filtered.cpm[,1]))), Mode = c(getmode(sense.filtered.cpm[,1]), getmode(log2(sense.filtered.cpm[,1]))), Median = c(median(sense.filtered.cpm[,1])), ) data data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), mean(log2(sense.filtered.cpm[,1]))), Mode = c(getmode(sense.filtered.cpm[,1]), getmode(log2(sense.filtered.cpm[,1]))), Median = c(median(sense.filtered.cpm[,1])), ) data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), mean(log2(sense.filtered.cpm[,1]))), Mode = c(getmode(sense.filtered.cpm[,1]), getmode(log2(sense.filtered.cpm[,1]))), Median = c(median(sense.filtered.cpm[,1])) ) data rownames(data) = c("Original", "Log2 Transformed") data table(data) data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]), mean(log2(sense.filtered.cpm[,1]))), Mode = c(getmode(sense.filtered.cpm[,1]), getmode(log2(sense.filtered.cpm[,1]))), Median = c(median(sense.filtered.cpm[,1])) ) rownames(data) = c("Original", "Log2 Transformed") data ## 2: Quantile Normalization # install quantile normalize #install.packages("BiocManager") if (!require("BiocManager")) install.packages("BiocManager") library(BiocManager) if (!require("preprocessCore")) BiocManager::install("preprocessCore") library(preprocessCore) # replace with custom function? # apply quantile normalization mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm) boxplot(mddExprData_quantile,range=0,ylab="raw intensity", main="Quantile Normalized") sapply(mddExprData_quantile, function(x) quantile(x, probs = seq(0, 1, 1/4)))