Completion of Part B
This commit is contained in:
parent
641ec7bf24
commit
d7e2ce00f4
512
.Rhistory
Normal file
512
.Rhistory
Normal file
@ -0,0 +1,512 @@
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1,2,3)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
#g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.breaks <- g.hist$breaks # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.breaks[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean)/kmin)
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
alpha.LM
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=5)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4)
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
#plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(yeast)
|
||||
hist(yeast)
|
||||
hist(g.vec)
|
||||
g.pois
|
||||
g.mean
|
||||
alpha.LM
|
||||
alpha.ML
|
||||
degree(g)
|
||||
sort(degree(g))
|
||||
sort(degree(g),decreasing=FALSE)
|
||||
sort(degree(g),decreasing=F)
|
||||
sort(degree(g),decreasing=false)
|
||||
sort(degree(g), decreasing = TRUE)
|
||||
head(sort(degree(g), decreasing = TRUE))
|
||||
stddev(degree(g))
|
||||
sd(degree(g))
|
||||
tail(sort(degree(g), decreasing = TRUE))
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# Homework 4 for the University of Tulsa' s CS-7863 Network Theory Course
|
||||
# Degree Distribution
|
||||
# Professor: Dr. McKinney, Spring 2022
|
||||
# Noah Schrick - 1492657
|
||||
library(igraph)
|
||||
library(igraphdata)
|
||||
data(yeast)
|
||||
g <- yeast
|
||||
g.netname <- "Yeast"
|
||||
################# Set up Work #################
|
||||
g.vec <- degree(g)
|
||||
g.hist <- hist(g.vec, freq=FALSE, main=paste("Histogram of the", g.netname,
|
||||
" Network"))
|
||||
legend("topright", c("Guess", "Poisson", "Least-Squares Fit",
|
||||
"Max Log-Likelihood"), lty=c(1,2,3,4), col=c("#40B0A6",
|
||||
"#006CD1", "#E66100", "#D35FB7"))
|
||||
g.mean <- mean(g.vec)
|
||||
g.seq <- 0:max(g.vec) # x-axis
|
||||
################# Guessing Alpha #################
|
||||
alpha.guess <- 1.5
|
||||
lines(g.seq, g.seq^(-alpha.guess), col="#40B0A6", lty=1, lwd=3)
|
||||
################# Poisson #################
|
||||
g.pois <- dpois(g.seq, g.mean, log=F)
|
||||
lines(g.seq, g.pois, col="#006CD1", lty=2, lwd=3)
|
||||
################# Linear model: Least-Squares Fit #################
|
||||
g.breaks <- g.hist$breaks[-c(1)] # remove 0
|
||||
g.probs <- g.hist$density[-1] # make lengths match
|
||||
# Need to clean up probabilities that are 0
|
||||
nz.probs.mask <- g.probs!=0
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.fit <- lm(log(g.probs.clean)~log(g.breaks.clean))
|
||||
summary(g.fit)
|
||||
alpha.LM <- coef(g.fit)[2]
|
||||
lines(g.seq, g.seq^(-alpha.LM), col="#E66100", lty=3, lwd=3)
|
||||
################# Max-Log-Likelihood #################
|
||||
n <- length(g.breaks.clean)
|
||||
kmin <- g.breaks.clean[1]
|
||||
alpha.ML <- 1 + n/sum(log(g.breaks.clean/kmin))
|
||||
alpha.ML
|
||||
lines(g.seq, g.seq^(-alpha.ML), col="#D35FB7", lty=4, lwd=3)
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
g.breaks.clean <- g.breaks[nz.probs.mask]
|
||||
g.probs.clean <- g.probs[nz.probs.mask]
|
||||
plot(log(g.breaks.clean), log(g.probs.clean))
|
||||
# load gene expression data
|
||||
load("sense.filtered.cpm.Rdata")
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
# load gene expression data
|
||||
load("sense.filtered.cpm.Rdata")
|
||||
dim(sense.filtered.cpm)
|
||||
colnames(sense.filtered.cpm)
|
||||
length(sense.filtered.cpm)
|
||||
## Set Working Directory to file directory - RStudio approach
|
||||
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
|
||||
## 2: Loading Demographic Data
|
||||
subject.attrs <- read.csv("Demographic_symptom.csv", stringsAsFactors = FALSE)
|
||||
dim(subject.attrs) # 160 subjects x 40 attributes
|
||||
colnames(subject.attrs) # interested in X (sample ids) and Diag (diagnosis)
|
||||
subject.attrs$X
|
||||
subject.attrs$Diag
|
||||
dim(sense.filtered.cpm)
|
||||
colnames(sense.filtered.cpm)
|
||||
rownames(sense.filtered.cpm)
|
||||
# Matching gene expression samples with their diagnosis
|
||||
if (!require("dplyr")) install.packages("dplyr")
|
||||
# Matching gene expression samples with their diagnosis
|
||||
if (!require("dplyr")) install.packages("dplyr")
|
||||
# create a phenotype vector
|
||||
# grab X (subject ids) and Diag (Diagnosis) from subject.attrs that
|
||||
# intersect %in% with the RNA-Seq data
|
||||
phenos.df <- subject.attrs %>%
|
||||
filter(X %in% colnames(sense.filtered.cpm)) %>%
|
||||
dplyr::select(X, Diag)
|
||||
# Matching gene expression samples with their diagnosis
|
||||
if (!require("dplyr")) install.packages("dplyr")
|
||||
# create a phenotype vector
|
||||
# grab X (subject ids) and Diag (Diagnosis) from subject.attrs that
|
||||
# intersect %in% with the RNA-Seq data
|
||||
phenos.df <- subject.attrs %>%
|
||||
filter(X %in% colnames(sense.filtered.cpm)) %>%
|
||||
dplyr::select(X, Diag)
|
||||
library(dplyr)
|
||||
# create a phenotype vector
|
||||
# grab X (subject ids) and Diag (Diagnosis) from subject.attrs that
|
||||
# intersect %in% with the RNA-Seq data
|
||||
phenos.df <- subject.attrs %>%
|
||||
filter(X %in% colnames(sense.filtered.cpm)) %>%
|
||||
dplyr::select(X, Diag)
|
||||
colnames(phenos.df) # $Diag is mdd diagnosis
|
||||
# grab Diag column and convert character to factor
|
||||
mddPheno <- as.factor(phenos.df$Diag) # this is our phenotype/class vector
|
||||
summary(mddPheno) # MDD -- major depressive disorder, HC -- healthy control
|
||||
#### Part B: Normalization
|
||||
## 1: log2 transformation
|
||||
# raw cpm boxplots and histogram of one sample
|
||||
boxplot(sense.filtered.cpm,range=0,
|
||||
ylab="raw probe intensity", main="Raw", names=mddPheno)
|
||||
# log2 transformed boxplots and histogram
|
||||
boxplot(log2(sense.filtered.cpm), range=0,
|
||||
ylab="log2 intensity", main="Log2 Transformed", names=mddPheno)
|
||||
hist(sense.filtered.cpm[,1], freq=F, ylab="density",
|
||||
xlab="raw probe intensity", main="Raw Data Density for Sample 1")
|
||||
hist(log2(sense.filtered.cpm[,1]), freq=F, ylab="density",
|
||||
xlab="log2 probe intensity", main="log2 Data Density for Sample 1")
|
||||
median(sense.filtered.cpm[,1])
|
||||
mode(sense.filtered.cpm[,1])
|
||||
average(sense.filtered.cpm[,1])
|
||||
mean(sense.filtered.cpm[,1])
|
||||
getmode <- function(v) {
|
||||
uniqv <-unique(v)
|
||||
uniqv[which.max(tabulate(match(v, uniqv)))]
|
||||
}
|
||||
getmode(sense.filtered.cpm[,1])
|
||||
median(sense.filtered.cpm[,1])
|
||||
mean(sense.filtered.cpm[,1])
|
||||
getmode(sense.filtered.cpm)
|
||||
median(sense.filtered.cpm)
|
||||
mean(sense.filtered.cpm)
|
||||
getmode(log2(sense.filtered.cpm))
|
||||
median(log2(sense.filtered.cpm))
|
||||
mean(log2(sense.filtered.cpm))
|
||||
log2(sense.filtered.cpm)
|
||||
log2(sense.filtered.cpm[,1])
|
||||
getmode(log2(sense.filtered.cpm[,1]))
|
||||
median(log2(sense.filtered.cpm[,1]))
|
||||
mean(log2(sense.filtered.cpm[,1]))
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
mean(log2(sense.filtered.cpm[,1]))),
|
||||
Mode = c(getmode(sense.filtered.cpm[,1]),
|
||||
getmode(log2(sense.filtered.cpm[,1]))),
|
||||
Median = c(median(sense.filtered.cpm[,1])),
|
||||
)
|
||||
data
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
mean(log2(sense.filtered.cpm[,1]))),
|
||||
Mode = c(getmode(sense.filtered.cpm[,1]),
|
||||
getmode(log2(sense.filtered.cpm[,1]))),
|
||||
Median = c(median(sense.filtered.cpm[,1])),
|
||||
)
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
mean(log2(sense.filtered.cpm[,1]))),
|
||||
Mode = c(getmode(sense.filtered.cpm[,1]),
|
||||
getmode(log2(sense.filtered.cpm[,1]))),
|
||||
Median = c(median(sense.filtered.cpm[,1]))
|
||||
)
|
||||
data
|
||||
rownames(data) = c("Original", "Log2 Transformed")
|
||||
data
|
||||
table(data)
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
mean(log2(sense.filtered.cpm[,1]))),
|
||||
Mode = c(getmode(sense.filtered.cpm[,1]),
|
||||
getmode(log2(sense.filtered.cpm[,1]))),
|
||||
Median = c(median(sense.filtered.cpm[,1]))
|
||||
)
|
||||
rownames(data) = c("Original", "Log2 Transformed")
|
||||
data
|
||||
## 2: Quantile Normalization
|
||||
# install quantile normalize
|
||||
#install.packages("BiocManager")
|
||||
if (!require("BiocManager")) install.packages("BiocManager")
|
||||
library(BiocManager)
|
||||
if (!require("preprocessCore"))
|
||||
BiocManager::install("preprocessCore")
|
||||
library(preprocessCore) # replace with custom function?
|
||||
# apply quantile normalization
|
||||
mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm)
|
||||
boxplot(mddExprData_quantile,range=0,ylab="raw intensity", main="Quantile Normalized")
|
||||
sapply(mddExprData_quantile, function(x) quantile(x, probs = seq(0, 1, 1/4)))
|
||||
@ -1 +1 @@
|
||||
,noah,NovaArchSys,22.09.2022 16:59,file:///home/noah/.config/libreoffice/4;
|
||||
,noah,NovaArchSys,22.09.2022 19:18,file:///home/noah/.config/libreoffice/4;
|
||||
@ -35,3 +35,65 @@ mddPheno <- as.factor(phenos.df$Diag) # this is our phenotype/class vector
|
||||
|
||||
summary(mddPheno) # MDD -- major depressive disorder, HC -- healthy control
|
||||
|
||||
#### Part B: Normalization
|
||||
## 1: log2 transformation
|
||||
# raw cpm boxplots and histogram of one sample
|
||||
boxplot(sense.filtered.cpm,range=0,
|
||||
ylab="raw probe intensity", main="Raw", names=mddPheno)
|
||||
|
||||
hist(sense.filtered.cpm[,1], freq=F, ylab="density",
|
||||
xlab="raw probe intensity", main="Raw Data Density for Sample 1")
|
||||
|
||||
# log2 transformed boxplots and histogram
|
||||
boxplot(log2(sense.filtered.cpm), range=0,
|
||||
ylab="log2 intensity", main="Log2 Transformed", names=mddPheno)
|
||||
|
||||
hist(log2(sense.filtered.cpm[,1]), freq=F, ylab="density",
|
||||
xlab="log2 probe intensity", main="log2 Data Density for Sample 1")
|
||||
|
||||
getmode <- function(v) {
|
||||
uniqv <-unique(v)
|
||||
uniqv[which.max(tabulate(match(v, uniqv)))]
|
||||
}
|
||||
|
||||
data <- data.frame(Mean = c(mean(sense.filtered.cpm[,1]),
|
||||
mean(log2(sense.filtered.cpm[,1]))),
|
||||
Mode = c(getmode(sense.filtered.cpm[,1]),
|
||||
getmode(log2(sense.filtered.cpm[,1]))),
|
||||
Median = c(median(sense.filtered.cpm[,1]))
|
||||
)
|
||||
rownames(data) = c("Original", "Log2 Transformed")
|
||||
data
|
||||
|
||||
## 2: Quantile Normalization
|
||||
# install quantile normalize
|
||||
#install.packages("BiocManager")
|
||||
if (!require("BiocManager")) install.packages("BiocManager")
|
||||
library(BiocManager)
|
||||
if (!require("preprocessCore"))
|
||||
BiocManager::install("preprocessCore")
|
||||
library(preprocessCore) # replace with custom function?
|
||||
|
||||
# apply quantile normalization
|
||||
mddExprData_quantile <- normalize.quantiles(sense.filtered.cpm)
|
||||
|
||||
boxplot(mddExprData_quantile,range=0,
|
||||
ylab="raw intensity", main="Quantile Normalized")
|
||||
|
||||
head(mddExprData_quantile)
|
||||
|
||||
## 3: Log2 on quantile normalized data
|
||||
mddExprData_quantileLog2 <- log2(mddExprData_quantile)
|
||||
# add phenotype names to matrix
|
||||
colnames(mddExprData_quantileLog2) <- mddPheno
|
||||
|
||||
boxplot(mddExprData_quantileLog2,range=0,
|
||||
ylab="log2 intensity", main="Quantile Normalized Log2")
|
||||
|
||||
hist(log2(mddExprData_quantileLog2[,1]), freq=F,
|
||||
ylab="density", xlab="log2 probe intensity",
|
||||
main="log2 Quantile Normalized for Sample 1")
|
||||
|
||||
## 4: Means
|
||||
mean(mddExprData_quantileLog2[,1])
|
||||
colMeans(mddExprData_quantileLog2)
|
||||
|
||||
Binary file not shown.
Loading…
x
Reference in New Issue
Block a user