# Lab 11 for the University of Tulsa's CS-6643 Bioinformatics Course # Introduction to fMRI Analysis and ICA # Professor: Dr. McKinney, Fall 2022 # Noah L. Schrick - 1492657 ## Set Working Directory to file directory - RStudio approach setwd(dirname(rstudioapi::getActiveDocumentContext()$path)) #### Part A: Haemodynamic response functions (HRF) and block design ## Plot Basic HRF from 0-20s hq <- function(t,q=4){ # q=4 or 5, where 5 has more of a delay return (t^q * exp(-t)/(q^q * exp(-q))) } # use seq to create vector time and use hq to create hrf vectors time <- seq(0,20) hrf1 <- hq(time) hrf2 <- hq(time, 5) # plot plot(time,hrf1,type="l") lines(time,hrf2,col="red") ## Deconvolve with task onset times # grabbed from afni c code # basis_block_hrf4 from 3dDeconvolve.c HRF <- function(t, d){ if (t<0){ y=0.0 }else{ y = 1/256*exp(4-t)*(-24-24*t-12*t^2-4*t^3-t^4 + exp(min(d,t))*(24+24*(t-min(d,t)) + 12*(t-min(d,t))^2+4*(t-min(d,t))^3+(t-min(d,t))^4)) } return(y) } t=seq(0,360,len=360) onsets=c(14,174,254) blocks.model = double() for (curr_t in t){ summed_hrf=0.0 for (start in onsets){ summed_hrf=summed_hrf+HRF(curr_t-start,20) } blocks.model = c(blocks.model,summed_hrf) } plot(blocks.model,type="l") ## Plot voxel time series data and the block design curve voxel.data <- read.delim("059_069_025.1D") plot(seq(1,2*dim(voxel.data)[1],by=2),t(voxel.data), type="l", xlab="time",ylab="intensity") # normalize the height of the blocks model blocks.normal <- max(voxel.data)*blocks.model/max(blocks.model) lines(blocks.normal,type="l",col="red") # regression length(blocks.normal) # too long dim(voxel.data)[1] # grab elements from blocks.normal to make a vector same as data blocks.norm.subset <- blocks.normal[seq(1,length(blocks.normal),len=dim(voxel.data)[1])] length(blocks.norm.subset) voxel.data.vec <- matrix(unlist(voxel.data),ncol=1) # use lm to create voxel.fit <- lm... voxel.fit <- lm(voxel.data.vec ~ blocks.norm.subset) plot(blocks.norm.subset,voxel.data.vec, xlab="block model",ylab="voxel data",main="regression fit") # use abline(voxel.fit) to overlay a line with fit coefficients abline(voxel.fit) #### Part B: Resting state fMRI visualization, multidimensional arrays and independent component analysis (ICA). ## example: multi-dimensional array # 2 3x4 matrices multArray <- array(1:24,dim=c(3,4,2)) dim(multArray) multArray[,,1] # matrix 1 multArray[,,2] # matrix 2 image(multArray[,,1]) # plot slice 1 image(multArray[,,2]) # plot slice 2 ## Neuroimaging Informatics Technology Initiative if (!require("fastICA")) install.packages("fastICA") if (!require("fmri")) install.packages("fmri") library(fastICA) library(fmri) # read in 4d nifti # uses fmri library, takes about 3min to load img <- read.NIFTI("rest_res2standard.nii") mask <- img$mask # Boolean mask for brain voxels dim(mask) ttt <- extractData(img) # extract 4d data cube numScans <- dim(ttt)[4] # plot a voxel's time series plot(ttt[30,30,30,],type="l",xlab="time",ylab="activity") ## Plot a 2D Slice yslice <- 35 scan2dslice <- ttt[,yslice,,50] # grab 2d slice at t=50 image(scan2dslice,main="no masking") # no mask # mask it off slice.mask <- mask[,yslice,] scan2dslice[slice.mask] <- NA # NA's become white image(scan2dslice,main="masked") ## ICA t1 <- Sys.time() # for timing purposes dataMat <- NULL for(t in seq(1,numScans)){ scan <- ttt[,,,t] # stretched out the 61x73x61 3d matrix into one row # apply mask and stack dataMat <- rbind(dataMat,scan[mask]) } t2 <- Sys.time() difftime(t2,t1) # 3 minutes dim(dataMat) ## ICA analysis # input X: rows observations (voxels) and cols variables (time) X <- t(dataMat) m <- 20 # specify number of ICA components t1<-Sys.time() f<-fastICA(X,n.comp=m,method="C") t2<-Sys.time() difftime(t2,t1) # 1.23min # S=XKW, # K is a pre-whitening PCA matrix (components by time) # S is the matrix of m ICAs (columns of S are spatial signals) # S has dimensions voxel x components S<-f$S # you can find K and W with $ ica.comp <- 5 # look at 5th component # plot the 5th time ICA plot(f$K[,ica.comp],type="l",xlab="time",ylab="signal",main="ICA component") # threshold S matrix theta <- 2 S[S<=theta] <- NA # turn S back into 4d multidimensional array xdim<-dim(ttt)[1] ydim<-dim(ttt)[2] zdim<-dim(ttt)[3] ica.4dArray <- array(matrix(S,ncol=1),dim=c(xdim,ydim,zdim,m)) dim(ica.4dArray) # 61x73x61x10 yslice <- 35 # grab 2d slice at y=yslice and ica 5 ica2dslice <- ica.4dArray[,yslice,,ica.comp] image(ica2dslice,main="ica component (spatial locations)")